MODELING ELECTRON CLOUD EFFECTS IN HEAVY ION ACCELERATORS*

R.H. Cohen^{1,2}, A. Azevedo³, A. Friedman^{1,2},
M.A. Furman³, S.M. Lund^{1,2}, A.W. Molvik^{1,2},
P. Stoltz⁴, J.-L. Vay^{1,2}, S. Veitzer⁴

¹ HIF-VNL, ² LLNL, ³ LBNL, ⁴ TechX Corp

Presented at 2004 Electron Cloud Workshop Napa, CA, USA April 21, 2004

* UCRL-CONF-203654 Work performed for U.S. D.O.E. by U.C. LLNL under contract W7405-ENG-48 and by U.C. LBNL under contract DE-AC03-76F00098

The Heavy Ion Fusion Virtual National Laboratory

R. Cohen, ECloud04, -1-

rrrrri

OUTLINE

- Distinguishing features of ecloud issues for HIF
- Our plan for self-consistent modeling
- Example with wall electron sources
- Electron effects on ions: simulations with specified electron distributions
- Preliminary results for averaged electron dynamics
- Summary

Related papers: Molvik et al (Monday p.m.) Vay et al (Tues. p.m.) Stoltz et al (next paper)

Artist's Conception of an HIF Power Plant on a few km² site

R. Cohen, ECloud04, -3rerere BERKELEY

HIF accelerators have distinguishing features that impact electron cloud issues

Compared to other accelerator applications:

- Many common issues and concerns, but also applicationspecific features
- Distinguishing aspects of HIF accelerators (U.S. main line with magnetic quadrupole focusing):
 - Linac with high line charge density
 - Induction accelerator --
 - hard to clean beam pipe ⇒ large neutral emission coefficient at pipe wall (≥ 10⁴ per lost ion)
 - Beam pipe only in quad magnets \Rightarrow scrape-off only in quads
 - Economic mandate to maximally fill beam pipe
 - Large fraction of length occupied by quadrupoles (>50% at injector end)
 - Long(ish) pulses -- multi-µs at injector end

Consequences 1

- Linac, so multiturn resonance not an issue
 - But long pulse \Rightarrow still instability if e-e SEY > 1
- Electrons largely confined to the quadrupole in which they are born, and electron density smaller in gaps than in quads; consequences of:
 - Beam pipe only in quads; strongly magnetized electrons
 - Time to drift out of a quad ~ pulse durations
 - Accelerating gaps between quads, which enable electrons to overcome space charge potential

Important implications for potential instabilities.

 Filling pipe as much as possible ⇒ ion scrape-off major source of electrons

Consequences 2: Electrons from gas released at walls in quads dominate

- e⁻ from ionization of neutrals released from walls dominates for long (multi-µs) pulses.
 - Born trapped by beam potential
 - Bounce radially
 - Drift axially
 - Acquire enough energy in gap to escape
 - Hence $\tau_e \sim$ time to drift through 1 quad
- For shorter pulses: wall-born electrons from ion bombardment
 - Nominal lifetime 1 transit (during beam flattop)
 - e⁻ from scrapeoff of beam ions: mainly on field lines that stay close to wall.
 - For small fraction born on field lines that penetrate deep into interior, collisionless pitch-angle scattering (nonadiabaticity) can make lifetime much longer

Consequences 3: we absolutely need to do e-cloud generation + e, i dynamics self-consistently

- Because of size of beam-scrape-off sources and long pulse, electron-ion interaction affects electron sources
- Especially challenging for us because
 - Timescales: need to deal with electrons in and between quads, so must deal with electron cyclotron motion yet follow ion dynamics (can't analytically integrate the cyclotron motion)
 - Variety of e-cloud sources
- But it may be that other e-cloud applications will also have this same need and face the same challenges

Toward a self-consistent model of electron effects

Plan for self-consistent electron physics modules for WARP

• Key: operational; implemented, testing; partially implemented; offline development

Example of current capability: wall-born electrons from primary and secondary ion bombardment

- WARP ion slice simulation, 400,000 ions
 - 100 lattice-period transport system (no acceleration)
 - Misaligned magnets (500 μm) to exaggerate beam scrapeoff
- Gather data for ions impacting wall (6282 ions), and calculate:
 - Electrons produced (from simple fit to Molvik et al data)
 - Scattered ion population (3629 ions), from TRIM Monte-Carlo code
- Follow the scattered ions in 3-D Warp until they next impact wall.
- Calculate electrons produced by those ions
- Follow dynamics of electrons produced by primary and scattered ion impacts with 3-D WARP; accumulate electron charge density

R. Cohen, ECloud04, -9-

Calculation of n_e from wall-born electrons shows importance of following scattered ions

- Full-orbit calculations of • electrons born near wall from impact of lost beam ions
 - Based on initial ion-wall impacts: cloud confined to wall near beam ellipse tips

 Dramatic difference if we follow scattered ions and add in the electrons THEY produce

Ion simulations with legislated electron clouds show level of acceptable density and highlight areas for concern

- Perform ion simulations with legislated negative charge distributions to mock up electrons
- All choices have constant parameters within a quad, but variable from quad to quad:
 - Const n_e
 - Random cloud amplitude variations
 - Sinusoidal cloud variations, with period chosen to match a beam natural mode
 - Breathing (amplitude or shape)
 - Centroid oscillations (dipole mode)

The Heavy Ion Fusion Virtual National Laboratory

- Elliptical distortion oscillations (quadrupole mode)
- Types of electron cloud variations studied (in all cases the perturbation is axially constant within a quadrupole, and varies from quad to quad):

Types of electron cloud perturbations specified

20% constant n_e has little effect

20% mean, 0-40% random $n_{\rm e}$ produces significant beam loss, envelope growth, halo

20% n_e with random transverse offsets produces intermediate beam loss, halo, emittance growth

20% n_e with random radial shape variation somewhat worse than const but much better than random amplitude

RESONANT perturbations are more damaging: 0-10% sinusoidally varying n_e resonant with breathing mode

RESONANT perturbations are more damaging: 0-10% sinusoidally varying n_e resonant with breathing mode

R. Cohen, ECloud04, -19-

Sinusoidal radial shape variation (10% n_e, resonant with breathing) less effective than amplitude modulation

Ellipticity resonant with q-pole oscillation (10% n_e) produces small beam loss but more bulk emittance growth

These resonant perturbations are potentially a source of instability

• Ion envelope breathing in phase with e⁻ oscillations

Envelope peaks will produce more electrons

- Electrons ~ immobile in beam direction due to quadrupoles
- Perturbation will grow
- Doesn't require const wavenumber (acceleration allowed)

R. Cohen, ECloud04, -22-

More on instability

 Crude, semi-empirical growth rate (assumptions: coasting beam; wall gas desorption dominates e⁻ production; neglect neutral time of flight; resonant beam loss ∝ n_e):

$$\frac{dN_e}{dt} = n_b N_n \langle \sigma v_i \rangle \qquad \qquad \frac{dN_n}{dt} = A \Gamma_w \kappa_n$$

with A=area, $\kappa_{\rm n}$ = neutrals released per incident ion, N=nV with V=beam volume

• Yields exponential growth with e-folding time:

$$\left[\frac{n_e}{n_b}\frac{Ve}{\langle\sigma\nu\rangle\kappa_n\Delta I_b}\right]^{1/2}$$

~ 3 μs for simulation parameters (~ $\tau_{b})$

- Growth limited by:
 - Velocity tilt
 - Beam current loss
 - Finite neutral transit time

Self-consistent e-i simulation requires technique to bridge timescales

- Need to follow electrons through strongly magnetized and unmagnetized regions ⇒ need to deal with electron cyclotron timescale, ~ 10⁻¹¹ sec.
- Ion timescales > 10^{-8} sec.
- Algorithm to bridge: interpolation between full-electron dynamics (Boris mover) and drift kinetics (motion along B plus drifts).
- Properly chosen interpolation allows stepping electrons on bounce timescale (~10⁻⁹ sec) yet preserves:
 - Drift velocity
 - Parallel dynamics
 - Physical gyroradius

The Heavy Ion Fusion Virtual National Laboratory

Interpolated mover: first tests meet expectations

- Compare full orbit to interpolated mover (10x dt).
- Single orbit comparisons of some regular and nonadiabatic (chaotic) orbits:
 - Good agreement on drift & bounce velocity, orbit size for regular orbits
 - Expected non-agreement for chaotic orbits (expect similar statistics; not yet tested).

Interpolated model reproduces the e-cloud calculation in < 1/25 time

• Compare full-orbit model, $\Delta t=.25/f_{ce}$, with interpolated model with Δt 25 times longer

Summary/conclusions

- High current, fill factor, pulse length, unclean walls of HIF induction accelerators ⇒ dominant electron source is ionization of neutrals released from walls
 - except ion-impact-produced wall-born electrons for short pulse expts or after drift compression
- Developing self-consistent modeling capability for e-cloud formation, dynamics, effects on ions
- Simulation of dynamics of wall-born electrons from ion impacts shows importance of keeping scattered ions
- Simulation of ion evolution with various model electron distributions shows:
 - effect of random amplitude variations > random offsets > const n_e
 - Resonant sinusoidal perturbations more potent, especially amplitude resonant with breathing mode.
 - Ion beams surprisingly robust: 20% const n_e little effect; several percent resonant perturbation needed for significant impact
 - Possible instability (mild) associated with resonant perturbations

