PAUL SCHERRER INSTITUT

Numerical and Computational Methods in Electron Cloud Simulations: Present and Future

Andreas Adelmann (PSI) in collaboration with C.E Siegerist (LBL), M.A Furman (LBL) and Ch. Pflaum (Univ. Erlangen)

- Problemspace in ECL Simulations
- A survey of codes
- Electron cloud simulation in the perspective
 of ultrascale computing

Problemspace in ECL Simulations

- Key issues
- Physical Model-
- Computational Methods

- is always approximatively

- large range of scales
- discretization / geometry
- convergence
- accuracy / BC
- scalability
- (parallel) efficiency
- finite number of resources
- I/O and post processing

large(st) range of scales

different dynamics of e and p -> integrator *transverse/vs. longitudinal dimensions -> field solver -build-up and steady state -> running time of simulation -large(est) number of macro particles -> statistics -> data handling, post processing, restart

PAUL SCHERRER INSTITUT

	Dim	Electron Model	Particle Pusher	Parallel (max cpu)	Fieldsolver
Quick-PIC, W. Mori et al.	2– 3		LeapFrog 4 th order	YES(128), 32 regular	EM- PIC
CLOUDLAND, L.F. Wang	2– 3	SE	Adaptive	NO	FEM
POSINST, M. Furman et al.	2	SR,IS,SE	Analytic	NO	Analytic
Head-Tail, Rumolo et al.	2– 3	-	Мар	NO	PIC
Ecloud, Rumolo et al.	2– 3	RS,SE,IS	Leap Frog, Analytic	NO	Analytic,FFT
Warp, Friedman et al.	1,2,3	SR,IS,SE,US	Leap Frog, hybrid drift	YES	ES-PIC,AMR
Orbit*, Holmes et al.	2– 3	SE, US	Leap Frog, Analytic	YES	ES-PIC
Best, Qin et al.	3		Symplectic	YES 512	DeltaF
CSEC etc. Blaskiewicz			Symplectic	NO	Analytic
PARSEC*, Adelmann et al.	3	SR,IS,SE	Leap Frog, RK-x, Analytic	YES (4048)	FEM MG ES

CMEE, Stoltz

Library for computational methods for electron cloud effects

SR: Synchrotron radiation

IS: Ionization

SE: Secondary emission

US: User selectable

*: not for production runs yet

PAUL SCHERRER INSTITUT

	Dim	Electron Model	Particle Pusher	Parallel (max cpu)	Fieldsolver
Quick-PIC, W. Mori et al.	2– 3		LeapFrog 4 th order	YES(128), 32 regular	EM- PIC
CLOUDLAND, L.F. Wang	2– 3	SE	Adaptive	NO	FEM
POSINST, M. Furman et al.	2	SR,IS,SE	RK	NO	Analytic
Head-Tail, Rumolo et al.	2– 3	SR	Мар	NO	PIC
Ecloud, Rumolo et al.	2– 3	-	Leap Frog, Analytic	NO	Analytic,FFT
Warp, Friedman et al.	1,2,3	SR,IS,SE,US	Leap Frog, hybrid drift	YES	ES-PIC,AMR
Orbit*, Holmes et al.	2– 3	SE, US	Leap Frog, Analytic	YES	ES-PIC
Best, Qin et al.	3		Symplectic	YES 512	DeltaF
CSEC etc. Blaskiewicz			Symplectic	NO	Analytic
PARSEC*, Adelmann et al.	3	SR,IS,SE	Leap Frog, RK-x, Analytic	YES (4048)	FEM MG ES

CMEE, Stoltz

Library for computational methods for electron cloud effects

- •SE from POSINST
- •Cross platform
- •Fortran,C & Python bindings
- •POSINST SE-Routines

PAUL SCHERRER INSTITUT

	Dim	Electron Model	Particle Pusher	Parallel (max cpu)	Fieldsolver
Quick-PIC, W. Mori et al.	2– 3		LeapFrog 4 th order	YES(128), 32 regular	EM- PIC
CLOUDLAND, L.F. Wang	2– 3	SE	Adaptive	NO	FEM
POSINST, M. Furman et al.	2	SR,IS,SE	RK	NO	Analytic
Head-Tail, Rumolo et al.	2– 3	SR	Мар	NO	PIC
Ecloud, Rumolo et al.	2– 3	-	Leap Frog, Analytic	NO	Analytic,FFT
Warp, Friedman et al.	1,2,3	SR,IS,SE,US	Leap Frog, hybrid drift	YES	ES-PIC,AMR
Orbit*, Holmes et al.	2– 3	SE, US	Leap Frog, Analytic	YES	ES-PIC
Best, Qin et al.	3		Symplectic	YES 512	DeltaF
CSEC etc. Blaskiewicz			Symplectic	NO	Analytic
PARSEC*, Adelmann et al.	3	SR,IS,SE	Leap Frog, RK-x, Analytic	YES (4048)	FEM MG ES

- quasistatic frozen field approximation
- FFT based field solver
- runtime 1 28 days !!!!!!!!!!

FIG. 2. (Color) QUICKPIC cycle. A 2D Poisson solver is used to calculate potentials and update positions and velocities in the plasma slab. After the slab is stepped through the beam, the stored potentials Ψ and φ are used to push the 3D beam.

PAUL SCHERRER INSTITUT

	Dim	Electron Model	Particle Pusher	Parallel (max cpu)	Fieldsolver
Quick-PIC, W. Mori et al.	2– 3		LeapFrog 4 th order	YES(128), 32 regular	EM- PIC
CLOUDLAND, L.F. Wang	2– 3	SE	Adaptive	NO	FEM
POSINST, M. Furman et al.	2	SR,IS,SE	RK	NO	Analytic
Head-Tail, Rumolo et al.	2– 3	SR	Мар	NO	PIC
Ecloud, Rumolo et al.	2– 3	-	Leap Frog, Analytic	NO	Analytic,FFT
Warp, Friedman et al.	1,2,3	SR,IS,SE,US	Leap Frog, hybrid drift	YES	ES-PIC,AMR
Orbit*, Holmes et al.	2– 3	SE, US	Leap Frog, Analytic	YES	ES-PIC
Best, Qin et al.	3		Symplectic	YES 512	DeltaF
CSEC etc. Blaskiewicz			Symplectic	NO	Analytic
PARSEC*, Adelmann et al.	3	SR,IS,SE	Leap Frog, RK-x, Analytic	YES (4048)	FEM MG ES

- FEM, irregular mesh
- Runtime 1 ... >10 hours

FIG. 1. Mesh example of the KEKB-LER vacuum chamber, used by the space charge solver for the photoelectron cloud.

PAUL SCHERRER INSTITUT

	Dim	Electron Model	Particle Pusher	Parallel (max cpu)	Fieldsolver
Quick-PIC, W. Mori et al.	2– 3		LeapFrog 4 th order	YES(128), 32 regular	EM- PIC
CLOUDLAND, L.F. Wang	2– 3	SE	Adaptive	NO	FEM
POSINST, M. Furman et al.	2	SR,IS,SE	RK	NO	Analytic
Head-Tail, Rumolo et al.	2– 3	SR	Мар	NO	PIC
Ecloud, Rumolo et al.	2– 3	-	Leap Frog, Analytic	NO	Analytic,FFT
Warp, Friedman et al.	1,2,3	SR,IS,SE,US	Leap Frog, hybrid drift	YES	ES-PIC,AMR
Orbit*, Holmes et al.	2– 3	SE, US	Leap Frog, Analytic	YES	ES-PIC
Best, Qin et al.	3		Symplectic	YES 512	DeltaF
CSEC etc. Blaskiewicz			Symplectic	NO	Analytic
PARSEC*, Adelmann et al.	3	SR,IS,SE	Leap Frog, RK-x, Analytic	YES (4048)	FEM MG ES

- time depended PIC code
- Warp + POSINST via CMEE
- real lattice

PAUL SCHERRER INSTITUT

	Dim	Electron Model	Particle Pusher	Parallel (max cpu)	Fieldsolver
Quick-PIC, W. Mori et al.	2– 3		LeapFrog 4 th order	YES(128), 32 regular	EM- PIC
CLOUDLAND, L.F. Wang	2-3	SE	Adaptive	NO	FEM
POSINST, M. Furman et al.	2	SR,IS,SE	RK	NO	Analytic
Head-Tail, Rumolo et al.	2-3	SR	Мар	NO	PIC
Ecloud, Rumolo et al.	2-3	-	Leap Frog, Analytic	NO	Analytic,FFT
Warp, Friedman et al.	1,2,3	SR,IS,SE,US	Leap Frog, hybrid drift	YES	ES-PIC,AMR
Orbit*, Holmes et al.	2– 3	SE, US	Leap Frog, Analytic	YES	ES-PIC
Best, Qin et al.	3		Symplectic	YES 512	DeltaF
CSEC etc. Blaskiewicz			Symplectic	NO	Analytic
PARSEC*, Adelmann et al.	3	SR,IS,SE	Leap Frog, RK-x, Analytic	YES (4048)	FEM MG ES

- POSINST type SE model
- real lattice

Observations

 very well developed and copied SE-Model & CMEE (computational methods for electron cloud effects) Cross
 platform ... use it !

- 2D models (w/wo lattice), fast
- analytic space charge fields or PIC
- simplified geometries

Observations cont.

- (2)-3D codes long runtime (1 to 28 day's !!!!)
- geometry is modeled better
- codes do not scale with many processors
- adaptive time stepping
- load balancing not mentioned ?

Addressing now the problem of scalability

Problem: in place 3D FFT (Temperton's)

Goals of PARSEC

(Parallel Self Consistent Electron Cloud)

- able to solve large 3D problems
- model detailed geometry
- use real lattice
- make efficient use of resources (numerical algorithms, expression templates)

Variable Window of Interest

Variable Window of Interest

Inside the window:

- time integration of e and p, self consistent in 3D
- Finite Element Discretisation
- Semi Structured Grid & Scalable Parallel Grid generation
- Scalable Parallel Multigrid

PARSEC cont.

- I/O HDF-5
- Visualisation vtk based (parallel) and interactive
- CMEE

Preview

PARSEC cont.

- I/O HDF-5
- Visualisation vtk based (parallel) and interactive
- CMEE

Focus on efficient, scalable numerical algorithm for the field solver in complicated geometries.

Complicated Geometries

PAUL SCHERRER INSTITUT ______

Let
$$\Omega = (0,1)^2$$
 and $\Omega_h = \left\{ (ih, jh) \mid i, j = 0, ..., n = \frac{1}{h} \right\}$, with h be the meshsize.
Discretize $-\Delta u(x, y) = f(x, y)$ with:
 $\frac{4u_h(x, y) - u_h(x+h, y) - u_h(x-h, y) - u_h(x, y+h) - u_h(x, y-h)}{h^2} \simeq f(x, y)$
 $(x, y) \in \Omega_h \cap \Omega$
 $\left(-\frac{1}{4} - 1 \right) \frac{1}{h^2} u_h(x, y) = f(x, y)$

Scalability - Communication cost (#Procs. > 100.)

	Jakobi-V	Gauß-Seidel – V
unstructured grid 3D M.Adams Sandia Labs	~ 30	~ 90
structured grid 2D	4	4
semi unstructured grid 3D	6	8

Scalability - Communication cost (#Procs. > 100.)

	Jakobi-V	Gauß-Seidel – V
unstructured grid 3D,M.Adams, Sandia Labs.	~ 30	~ 90
structured grid 2D	4	4
semi unstructured grid 3D	6	8

Processors	Problem Size	Time / sec
1884	401e6	1727
4048	875e6	1724

Linear Scaling with 4k Processors

Fact: Scalability is possible: selecting/developing the right set of methods and algorithms

Electron cloud simulation in the perspective of ultrascale computing

THOR'S HAMMER RED STORM Prom the SOS8 presentation by Bill Camp, Sandia Labs

Featured attraction: Computers for Doing Big Science

2004: Red Storm: ~11600 processor Opteron-based MPP [>40 Tflops]

2005: ~1280-Processor 64-bit Linux Cluster [~10 TF]

2006 Red Storm upgrade ~20K nodes, 160 TF.

2008--9 Red Widow ~ 50K nodes, 1000 TF. (?)

	Today	Tomorrow
Nodes	8k	10k
Processors	Power 3	2 GHz Athlon
Memory	8TB	10 (80) TB
Network MPI latency	15-20 μ s	2-5 μ s
Bi-directional bandwidth	800 MB/s	6.4 GB/s

Q: do we need

!Yes!

•qualitative to quantitative understanding

- instabilities
- •compare experimental data

Q1: do we need

!so if YES !

Q2: 3D Validation

•LHC FoDo cell?

- •NLC damping wiggler?
- •HIF?
- •PSR & data ?
- Analytic problems

The example: p-bunch passing through the uniform e-cloud

The change in the transverse momentum of protons are in perfect agreement with analytical calculations

Summary

- •Scalable and not so scalable methods exists
- •Main problem: resolving scales can be done by combining newest numerical techniques with latest stat of the art computers.
- •What is the parameter space of the "killer" ECL problem?
- •Call for 3D code validation examples

Thank you!