Design and Implementation of SNS Ring Vacuum System with Suppression of Electron Cloud Instability

Outline

- SNS Project, Layout and Parameters
- Ring and Vacuum System
- E Cloud Mitigation
 - TiN Coating Effort
 - Electron Capture @ Inj. and Clearing
 - Solenoid Effect
 - Beam Scrubbing at High Pressure

Summary

The Spallation Neutron Source (SNS) Project

- SNS is the latest large user facility built in the US
 - A \$1.4 billion, 7-year project from Oct. 1999 to June 2006
- Collaboration among six national laboratories, built at Oak Ridge, TN
 - Argonne, Brookhaven, Jefferson, Berkeley, Los Alamos, Oak Ridge
 - Potential model for the construction of future large-scale projects
- Accelerator based neutron source
 - With 1 GeV proton on Hg target 1.6x10¹⁴ ppp @ 60 Hz
- At 1.4 MW, SNS will be ~8 times ISIS, the world's leading pulsed neutron source

NATIONAL LABORA

SNS Schematic Layout

- LBL: H⁻ source (20 KeV), RFQ (2.5 MeV)
- LANL: DTL (87 MeV), CCL (185 MeV), Linac warm components
- JLab: Superconducting RF cavities (1 GeV) & cryo systems
- BNL: HEBT, Accumulator Ring, RTBT
- ANL: Neutron Instruments
- ORNL: Target, Conventional Facility, ... Overall Management

SNS Main Parameters

Kinetic energy, E _k [MeV]	1000
SRF cryo-module number, med β + high β	11+12 = 23
SRF cavity number, med β + high β	33+48 = 81
Peak gradient, $E_p (\beta=0.61 \text{ cavity}) [MV/m]$	27.5 (+/- 2.5), 10 (avg)
Peak gradient, $E_p (\beta=0.81 \text{ cavity}) [MV/m]$	35 (+2.5/-7.5), 12-15 (avg)
Beam power on target, P _{max} [MW]	1.4
Pulse length on target [ns]	695
Average macropulse H- current, [mA]	26
Linac average beam current [mA]	1.6
Ring rf frequency [MHz]	1.058
Ring injection time [ms] / turns	1.0 / 1060
Ring bunch intensity [10 ¹⁴]	1.6

Layout of SNS Linac Sections

31st ICFA Workshop, Napa, CA, April 19-23, 2004

Accumulator Ring and Transport Lines

Functions:

Compress 1060-turn (~1ms) protons (H⁻) from Linac into a 0.7 μ s pulse to Target

Good quality uniform beam at Target w/o beam halos

Low un-controlled loss of < 1 watt/m @ 1 MW operation

Reliable & maintainable in high radiation environment

Ring Specifics:

Hybrid Lattice w/ 4-fold symmetry

4 Arcs of 34m each, FODO Lattice

8 halfcells and one quartercell

4 straight sections of 28m, Doublets

dedicated sections for Inj. Collimation, Ext. & RF.

7

Ring Vacuum System Parameters

Vacuum Requirement:

<1x10⁻⁸ Torr to minimize beam - residual gas ionization

- $\sigma \sim 1 \times 10^{-18} \text{ cm}^2 (40 \text{H}_2/40 \text{H}_2\text{O}/20 \text{CO})$
- ~10⁻³ ionization / p.ms
- \Rightarrow e-p instability, neutralization,
- TiN coating on inner surface to reduce secondary electron yield (SEY) < 1.9

Conductive coating of inj. kicker ceramic chambers with Cu + TiN ($\sim 0.04 \Omega$)

TiN coating of ext. kicker ferrites

Reliable and maintainable

Ring Arc Layout

NSNS.

- Each arc has 8 halfcells (4 types) and one quartercell
- Dipole -17cm x 1.4m, 0.9 T, r =7.6m
- Quads and Sextupoles two families
 21cm and 26cm, ~ 5 T/m

H.C. Hseuh, BNL 31st ICFA Workshop, Napa, CA, April 19-23, 2004

Arc Vacuum Chambers

32 HC + 4 QC chambers
HC chambers ~ 4m long ea. of 4 types
Q+S+C: 21cmΦ or 26cm Φ x 1.6m
D: 23cm x 17cm x 2m x 11.25°
QC chambers ~ 21cmΦ x 2m
316LN stainless steel + Inconel bellows
Tapered transition and rf-shielded ports
BPM – strip line type, 70° x 4

Injection & RF Straight Sections

- 4 Straight sections of 28m each:
- Two doublets in each straight section
 - 30Q44 (narrow quad) and 30Q58
 - Chambers of 29cm Φ , 3 5 m long
- Other devices
 - 4 RF cavity assemblies
 - 8 Inj. kickers w/ ceramic chambers
 - 4 Inj. chicane magnets and chambers

Collimation & Extraction Straight Sections

- Primary scraper and 2-stage collimation
 - 240 π @ Colli #1; 300 π @ Colli #2 and #3
 - 480π for Ring & RTBT to Target
 - Solenoids to confine the scattered electrons and to minimize multipacting
- 14 kickers and Lambertson for vertical extraction
 - Kicker ferrites to be coated with TiN
 - B.I.G. kickers to remove residuals

H.C. Hseuh, BNL 31st ICFA Workshop, Napa, CA, April 19-23, 2004

Ring Physics Challenges (Jie Wei, BNL)

- Guaranteed beam-density on target
 - Immune to kicker misfiring, protected against malfunctions
- Electron cloud & instabilities
 - How to collect & control electrons generated at injection, collimators, ... and due to multipacting
 - Impedance of ext. kicker ferrite modules (in vacuum)
- Magnet field variation, correction, alignment
 - Field uniformity ~ 10⁻⁴ for main magnets; shimming needed for solid-core magnets
 - Non-trivial design on C-type, septum to reach 10⁻³
- Loss control
 - Control of injection field to reduce H⁻ and H⁰ loss
 - Facilitate two-stage collimation and beam-in-gap cleaning

Electron-cloud Mitigations in SNS Ring

- TiN Coating to reduce secondary electron emission (SEY)
 - all ring chamber wall,
 - injection kicker ceramic chambers
 - extraction kicker modules
- Solenoids in collimation region and other field free regions
 - to confine scattered electrons and suppress multipacting
- Tapered magnetic field and clearing electrode at Injection stripping foil
- Beam-position-monitors as clearing electrodes
- Beam-in-gap kicker to clear residuals
- Extra vacuum ports for additional pumps and for beam scrubbing

TiN Coating of Ring Vacuum Chambers

Goal: Low SEY, good adhesion

DC Magnetron sputtering with permanent magnets

high sputtering rate (10x DC)

low sputtering pressure

Bake @ 250 C x 40 hrs to minimize impurity

Coat with ~ 100 nm of TiN (~ 2 hrs)

Need uniform N_2 gas flow along the length

to get correct stoichiometry (Ti/N = 0.95 - 1.03)

Analyzed with AES, RBS, SEM...

	DC Magnetron vs DC									
Sputtering	Operating	Ar Flow	N2 Flow	Ptotal	Volts	Amps	Dep. Rate	Ti:N(x)	O%	
Mode	Region	(sccm)	(sccm)	Torr			Ahr	by AES	by AES	
straight DC	В	8.3	0.9	3 e -2	4500	0.06	200	1.16	7.1	
magnetron	В	13.7	11	6e-3	308	10	2000	-	-	
magnetron	C-D	13.3	7	&- 3	300	4.5	1000	1.2	-	
magnetron	D	13.3	2.75	6e-3	300	4.5	1000	1.22	3	

Coating pressure v. SEY

- @ ~ 5 mTorr \Rightarrow darker color, higher Q, lower SEY*
- @ ~ 1.5 mTorr \Rightarrow gold color, lower Q, higher SEY*
- Ar GDC treatment to condition the surface and remove contaminants

Peak SEY (as received)

- Stainless ~ 2.5
- TiN coated at LP $\sim 1.9 2.2$
- TiN coated at HP $\sim 1.5 1.8$

*SEY measured by N. Hilleret and B. Henrist of CERN

As Received SEY Values vs. Coating Pressure

NATIONAL

Surface of Chamber Coating Coupons

-- #8A, gold color

Rougher surface has lower SEY, perhaps due to re-entry of 2nd electrons back into the bulk

Scanning Electron Microscope images @ x1500

-- 5mTorr, w/Ar GDC

-- # 5A, brown color

SEY= 1.1 after air and vacuum bake

SEM images of CERN LEP2 copper cavity surface (N. Hilleret, CERN)

H.C. Hseuh, BNL 31st ICFA Workshop, Napa, CA, April 19-23, 2004

Outgassing of SNS Halfcell Chambers

Inj. Kicker Magnets and Ceramic Chambers

8 Ferrite injection kicker magnets
 with Ceramic chambers of 100cm (L) x 18cm ID
 0.1 - 1.1 KG (110 – 1300A) over 1 msec
 with satisfactory rise/fall time (~ 100 μsec)

Conductive coating for beam image current + TiN 0.04 Ω (± 50%) end-to-end resistance \Rightarrow 18μm of TiN or 0.7μm of Cu TiN sputtering rate of < 0.1 nm/s, (~50h for 18µm) Cu coating rate of ~ 0.56nm/s, (20 min for 0.7μ m) Chose to coat w/ Cu ~ 0.7 μ m, then TiN ~ 0.1 μ m with R ~ 0.045 ± 0.008 Ω (10 chambers average) Thickness uniformity $< \pm 30\%$ Eddy current heating w/ magnet pulsing < 100 watt/m and ΔT < 20°C @ 1300A (~1.3 GeV) x 60Hz No noticeable effect to kicker field and rise time

20

Short kickers w/ common ceramic chamber

Coating Development for Inj. Ceramic Chambers

Thickness Distribution of Ti and TiN on Glass Tubes

NATIONAL

LABOR

H.C. Hseuh, BNL 31st ICFA Workshop, Napa, CA, April 19-23, 2004

Coating of Ext. Kicker Modules

14 kicker modules of various dimensions 10-18cm(H) x 12-22cm(V) x 0.4m(L) 34 kV x 3 kA (<1.8 mrad) each rise time of ~ 100 nsec

Ferrite surface coated with TiN strips 9mm wide x 1mm spacing (w/ custom masks) 100 nm thick

Eddy current heating (M. Blaskiewicz, BNL)

 $\Delta T < 2^{\circ}C$, Pavg < watts t (EM) < 1 nsec

w/ Coating Masks

NATIONAL LABOR

H.C. Hseuh, BNL 31st ICFA Workshop, Napa, CA, April 19-23, 2004

Collection of Stripped Electrons @ Inj. Foil

- Carbon-carbon collector on watercooled copper plate
- Clearing electrode (~ 10 kV) to reduce scattered electrons

H.C. Hseuh, BNL 31st ICFA Workshop, Napa, CA, April 19-23, 2004

on .tor elections

Clearing electrode

Water cooled copper plate

Electron Clearing by BPMs

RHE

BPMs

BPM as clearing electrodes (±1 kV)

- 44 strip-line type, 70° x 25cm x 4 planes
- To suppress multipacting
- To clean the bunch gap
- Sufficient @ 200 volts, reduce e density x 3

Solenoid Field in Field Free Regions

SEY vs Electron Scrubbing (SLAC bench test)

SEY of TiN coated Nb surface was reduced from 1.6 to 1.25 after dosage of 0.1 mC/mm² at 1067 eV

E. Garwin, et al., J. Appl. Phys., 61, 1145(1987)

Figure 5. Peak SEY of TiN-coated Al alloy as a function of normal incidence electron beam bombardment exposure. The inset shows the complete yield curve for the first (A) and last (B) points. The data begins with a room atmosphere-exposed surface.

SEY of TiN coated AI surface was reduced from 1.6 to 1.1 after dosage of 0.1 mC/mm² at 1100 eV

SEY vs electron and Ar scrubbing (KEK bench test)

Dependence of secondary electron yields on a primary electron e at the surfaces as-received and after sputtering.

XPS spectra of TiN/SS surface after ESD and Ar⁺ ion sputtering treatments show the removal of C and O contaminants and the corresponding decrease in SEY

Ion scrubbing cleans surface more effectively than e-

SINGLE ALLOW SOURCE

 SEY_{max} of TiN/SS (light blue color) reduced from 1.9 to 0.8 after sputtering with 5 keV Ar⁺ ions

SEY_{max} decreased from 1.8 to 1.1 after e⁻ dosage of ~100mC/mm² !!!

Ion scrubbing is more effective than ESD

CERN SEY Measurements and SPS Scrubbing

Beam Scrubbing Experience at PSR

Beam Scrubbing in SNS

Reduction of SEY and pressure rise by beam scrubbing

- SLAC & CERN bench tests: ~1mC/mm² will reduce SEY from 2.2 to 1.3
- KEK sputtering with Ar⁺ ions reduce SEY from 1.9 to 0.8
- SPS 2002: at P = 5×10^{-6} Torr x 24 hrs, $\sim 0.5 \text{mC/mm}^2$, ΔP reduced by ~ 100 in 4 days.
- PSR: at P < $2x10^{-7}$ Torr x 24 hrs, ~ $0.04mC/mm^2$, beam threshold increase by x2
- For SNS scrubbing: continuous inject until the pressure rise to pump limits
 - < 1x10⁻⁶ Torr for IP; > 1x10⁻⁵ Torr with turbopump.
 - More effective at high pressure (both e and ion bombardment)!

Summary

- One of the major physics challenges in SNS Ring is
 - to collect & control electrons generated at injection, collimators, and due to multipacting
- TiN coating to reduce SEY from ~ 2.5 to < 1.9
 - SEY depends on coating pressure higher $\mathsf{P} \Rightarrow \mathsf{lower} \; \mathsf{SEY}$
 - Coating of inj. ceramic chambers, ext. kicker ferrites, ...
- Tapered magnetic field and clearing electrode at Injection stripping foil
- 44 BPMs as clearing electrodes effective at a few hundred volts
- Solenoids to confine scattered electrons at field free regions
 - B_z of 30 Gauss will be sufficient to reduce multipacting
- Beam scrubbing will reduce both SEY and outgassing
 - @ high pressure is more effective (accommodated with TMPs).