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The Spallation Neutron Source (SNS) Project

� SNS is the latest large user facility built 
in the US 
� A $1.4 billion, 7-year project from 

Oct. 1999 to June 2006
� Collaboration among six national 

laboratories, built at Oak Ridge, TN
� Argonne, Brookhaven, Jefferson, 

Berkeley, Los Alamos, Oak Ridge
� Potential model for the construction 

of future large-scale projects
� Accelerator based neutron source

� With 1 GeV proton on Hg target
1.6x1014 ppp @ 60 Hz

� At 1.4 MW, SNS will be ~8 times ISIS,  
the world�s leading pulsed neutron 
source
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SNS Schematic Layout

FE + Linac = 335m

Ring + Lines = ~ 600m

� LBL: H- source (20 KeV), RFQ (2.5 MeV)

� LANL:   DTL (87 MeV), CCL (185 MeV), Linac warm components

� JLab: Superconducting RF cavities (1 GeV) & cryo systems

� BNL: HEBT, Accumulator Ring, RTBT

� ANL:     Neutron Instruments

� ORNL:  Target, Conventional Facility, � Overall Management

Front End
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SNS Main Parameters

695Pulse length on target [ns]

1.4Beam power on target, Pmax [MW]

1.058Ring rf frequency [MHz]

1.6Linac average beam current [mA]

1.6Ring bunch intensity [1014]

1.0 / 1060Ring injection time [ms] / turns

26Average macropulse H- current, [mA]

1000Kinetic energy, Ek [MeV]

35 (+2.5/-7.5), 12-15 (avg)Peak gradient, Ep (β=0.81 cavity) [MV/m]

27.5 (+/- 2.5), 10 (avg)Peak gradient, Ep (β=0.61 cavity) [MV/m]

33+48 = 81SRF cavity number, med β + high β

11+12 = 23SRF cryo-module number, med β + high β



March 10-12, 2003

6

H.C. Hseuh, BNL
31st ICFA Workshop, Napa, CA, April 19-23, 2004

Layout of SNS Linac Sections 

335m

HEBT
BNL

RFQ DTL CCL

805 MHz, 5.0 MW

Chopper
2.5 MeV

86.8 MeV
1000 MeV

Front End
LBL

H Injector-
2 HEBT
Cavities

402.5 MHz
RF Power

Linac Controls
RT Linac LANL

186 MeV

Med. 
beta

High
beta

SRF Linac JLAB

HEBT
BNL

RFQ DTL CCL

805 MHz, 5.0 MW
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2 HEBT
Cavities

402.5 MHz
RF Power

Linac Controls
RT Linac LANL
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SRF Linac JLAB

80 m for 
1.3 GeV
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Accumulator Ring and Transport Lines

Collimation

RF + Diag

Injection
Extraction

Linac

248m Φ

HEBT 
220m

RTBT 
165m

Functions:
Compress 1060-turn (~1ms)
protons (H-) from Linac into a 
0.7 µs pulse to Target
Good quality uniform beam at 
Target w/o beam halos
Low un-controlled loss of < 1 
watt/m @ 1 MW operation
Reliable & maintainable in high 
radiation environment

Ring Specifics:
Hybrid Lattice w/ 4-fold symmetry
4 Arcs of 34m each, FODO Lattice

8 halfcells and one quartercell
4 straight sections of 28m, Doublets

dedicated sections for Inj. Collimation, Ext. & RF. Target
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Ring Vacuum System Parameters

Arc

Inj.

Collim.

RF+Diag.

Ext.

Arc

Arc

Arc

Vacuum Requirement:

<1x10-8 Torr to minimize beam - residual 
gas ionization 
σ ~ 1x10-18 cm2  (40H2/40H2O/20CO)
~10-3 ionization / p.ms
⇒ e-p instability, neutralization, 

TiN coating on inner surface to reduce 
secondary electron yield (SEY) < 1.9

Conductive coating of inj. kicker ceramic 
chambers with Cu + TiN (~0.04 Ω)

TiN coating of ext. kicker ferrites

Reliable and maintainable
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Ring Arc Layout

QC� Each arc has 8 halfcells (4 types) and 
one quartercell

� Dipole -17cm x 1.4m, 0.9 T, r =7.6m
� Quads and Sextupoles - two families

21cm and 26cm, ~ 5 T/m

Arc halfcell assembly
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Arc Vacuum Chambers
32 HC + 4 QC chambers
HC chambers ~ 4m long ea. of 4 types

Q+S+C: 21cmΦ or 26cm Φ x 1.6m
D: 23cm x 17cm x 2m x 11.25o

QC chambers ~ 21cmΦ x 2m
316LN stainless steel + Inconel bellows
Tapered transition and rf-shielded ports
BPM � strip line type, 70o x 4

BPMPump Ports

D

S

Q

C

Arc HC chambers

Dipole chamber 
cross section
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Injection & RF Straight Sections
� 4 Straight sections of 28m each: 

� Two doublets in each straight 
section
� 30Q44 (narrow quad) and 30Q58
� Chambers of 29cm Φ, 3 � 5 m long

� Other devices
� 4 RF cavity assemblies
� 8 Inj. kickers w/ ceramic chambers
� 4 Inj. chicane magnets and chambers

Narrow quad for
inj. & ext.

Inj. SSinj. kickers Inj. chicane magnets inj. kickers

doublet

doublet chambers BPM

doublet doublet

RF SS

WCM,BCM, .…IPMs

RF Cavities

Beam
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Collimation & Extraction Straight Sections

Ext. SS

doublet
gate valvegate valve

Ext. Kickers 1-7Ext. Kickers 8-14

BIG 
Kicker

Colli#3 Colli#2 Colli#1
Tune M

Movable 
Scrapers

� Primary scraper and 2-stage collimation
� 240π @ Colli #1; 300π @ Colli #2 and #3

� 480π for Ring & RTBT to Target
� Solenoids to confine the  scattered electrons 

and to minimize multipacting

� 14 kickers and Lambertson for vertical extraction
� Kicker ferrites to be coated with TiN
� B.I.G. kickers to remove residuals

Colli. SS

Lambertson

Beam

Lambertson

doublet
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Ring Physics Challenges   (Jie Wei, BNL)

� Guaranteed beam-density on target
� Immune to kicker misfiring, protected against malfunctions

� Electron cloud & instabilities
� How to collect & control electrons generated at injection, 

collimators, � and due to multipacting
� Impedance of ext. kicker ferrite modules (in vacuum)

� Magnet field variation, correction, alignment
� Field uniformity ~ 10-4 for main magnets; shimming needed for 

solid-core magnets
� Non-trivial design on C-type, septum to reach 10-3

� Loss control
� Control of injection field to reduce H- and H0 loss
� Facilitate two-stage collimation and beam-in-gap cleaning
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Electron-cloud Mitigations in SNS Ring

� TiN Coating to reduce secondary electron emission (SEY)

� all ring chamber wall, 

� injection kicker ceramic chambers

� extraction kicker modules

� Solenoids in collimation region and other field free regions

� to confine scattered electrons and suppress multipacting

� Tapered magnetic field and clearing electrode at Injection stripping foil

� Beam-position-monitors as clearing electrodes

� Beam-in-gap kicker to clear residuals

� Extra vacuum ports for additional pumps and for beam scrubbing
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TiN Coating of Ring Vacuum Chambers

N2 distribution line

Ti cathode

magnets w/ spacers

plasma during 
sputtering

Goal: Low SEY, good adhesion
DC Magnetron sputtering with permanent magnets 

high sputtering rate (10x  DC)
low sputtering pressure

Bake @ 250 C x 40 hrs to minimize impurity
Coat with ~ 100 nm of TiN ( ~ 2 hrs)
Need uniform N2 gas flow along the length

to get correct stoichiometry (Ti/N = 0.95 � 1.03)
Analyzed with AES, RBS, SEM�

HC chamber being coated
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TiN Coating Parameters

DC Magnetron vs DC

Sputtering Operating Ar FlowN2 FlowPtotal Volts Amps Dep. RateTi:N(x) O %
Mode Region (sccm) (sccm) Torr A/hr by AES by AES

straight DC B 8.3 0.9 3e-2 4500 0.06 200 1.16 7.1
magnetron B 13.7 11 6e-3 308 10 2000 - -
magnetron C-D 13.3 7 8e-3 300 4.5 1000 1.2 -
magnetron D 13.3 2.75 6e-3 300 4.5 1000 1.22 3

Coating pressure  v. SEY
� @ ~ 5 mTorr  ⇒ darker color, higher Q, lower SEY*
� @ ~ 1.5 mTorr ⇒ gold color, lower Q, higher SEY*
� Ar GDC treatment to condition the surface

and remove contaminants
Peak SEY (as received)   
� Stainless  ~ 2.5
� TiN coated at LP ~ 1.9 � 2.2
� TiN coated at HP ~ 1.5 � 1.8

*SEY measured by N. Hilleret and B. Henrist of CERN
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As Received SEY Values vs. Coating Pressure
SEY of BNL TiN samples

CERN LHC/VAC B. HENRIST 12/7/2002
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(measured by N. Hilleret and B. Henrist of CERN)
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Surface of Chamber Coating Coupons

Rougher surface has lower SEY, 
perhaps due to re-entry of 2nd

electrons back into the bulk

Scanning Electron Microscope 
images @ x1500

-- # 5A, brown color
-- 5mTorr, w/Ar GDC

-- #8A, gold color
-- 1.5mTorr

-- #5B, gold color
-- 1.5mTorr, w/ Ar GDC

SEM images of CERN LEP2 
copper cavity surface
(N. Hilleret, CERN)
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Outgassing of SNS Halfcell Chambers 

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

9A uncoated, no vacuum degass
2A uncoated, vacuum degass
3A, vacuum degass, HP coated
1C, vacuum degass, HP coating, GDT
7A, vacuum degass, LP coating
5B, vacuum degass, LP coating, GDT

� Q (HP) ~ 5 x Q (LP) @ 48hr

� δP/δt (HP) is smaller than δP/δt (LP)
Larger surface area
Tighter bonding

� HP coating was chosen for low SEY!

�Time (hr)

�Q
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Inj. Kicker Magnets and Ceramic Chambers

8 Ferrite injection kicker magnets
with Ceramic chambers of 100cm (L) x 18cm ID
0.1 - 1.1 KG (110 � 1300A) over 1 msec
with satisfactory rise/fall time (~ 100 µsec)

Long kickers

Conductive coating for beam image current + TiN
0.04 Ώ (± 50%) end-to-end resistance ⇒

18µm of TiN or 0.7µm of Cu

TiN sputtering rate of < 0.1nm/s, (~50h for 18µm)

Cu coating rate of ~ 0.56nm/s, (20 min for 0.7µm)

Chose to coat w/ Cu ~ 0.7 µm, then TiN ~ 0.1 µm 
with R ~ 0.045 ± 0.008 Ω (10 chambers average)
Thickness uniformity < ± 30%

Eddy current heating w/ magnet pulsing
< 100 watt/m and ∆T < 20oC 
@ 1300A (~1.3 GeV) x 60Hz

No noticeable effect to kicker field and rise time Short kickers w/ 
common ceramic 
chamber
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Coating Development for Inj. Ceramic Chambers

Little coating in the center of the  
chambers due to charge build-up

Use anode screen to smooth out the field
� with 90% opening
� positioned 5mm from surface to 

minimize shadowing

TiN coating 
w/o screen

Ceramic tube and anode screen

TiN coating 
w/o screen

TiN coating 
w/o screen

w/ anode screen

Thickness uniformity
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Coating of Ext. Kicker Modules 
Extraction Kicker Assembly

w/ Coating Masks Kicker coating system

Kicker Vessel

14 kicker modules of various dimensions

10-18cm(H) x 12-22cm(V) x 0.4m(L)

34 kV x 3 kA (<1.8 mrad) each

rise time of ~ 100 nsec

Ferrite surface coated with TiN strips

9mm wide x 1mm spacing (w/ custom masks)

100 nm thick 

Eddy current heating (M. Blaskiewicz, BNL) 
∆T < 2oC, Pavg < watts

t (EM) < 1 nsec

Kicker Modules
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Collection of Stripped Electrons @ Inj. Foil

Foil chambers 
under testing

Injection chicane 
magnet Injection chicane chamber 

w/ Cu plate C Foil (24) mechanism

� Two electrons from H- stripping
� Electrons from beam scattering on foil
� Tapered magnet to guide stripped 

electrons (~ 2 kW) 
� Carbon-carbon collector on water-

cooled copper plate
� Clearing electrode (~ 10 kV) to reduce 

scattered electrons
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Electron Clearing by BPMs

electron cloud under a 
clearing electrode

BPM as clearing electrodes (±1 kV)

� 44 strip-line type, 70o x 25cm x 4 planes

� To suppress multipacting

� To clean the bunch gap

� Sufficient @ 200 volts, reduce e density x 3
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Electron line density vs. clearing voltage
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Solenoid Field in Field Free Regions

PSR solenoid (0.5 m x 20 Gauss) 
reduced e- density by 100.
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L. Wang, BNL

R. Macek, LANL

Electron cloud under 
a 30 G solenoid 

Solenoid of ~30 G to reduce multipacting
� >102 reduction in electron line density 
� Only ~18m (7%) available, mostly at 

inj. & collimation straight sections
� > 12% possible in PSR, > 60% in LER of

KEKB and PEPII
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SEY vs Electron Scrubbing (SLAC bench test)

0.1 mC/mm2

SEY of TiN coated Al surface was reduced 
from 1.6 to 1.1 after dosage of 0.1 mC/mm2 at 
1100 eV

SEY of TiN coated Nb surface was reduced from 1.6 to 
1.25 after dosage of 0.1 mC/mm2 at 1067 eV

E. Garwin, et al., J. Appl. Phys., 61, 1145(1987)
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SEY vs electron and Ar scrubbing (KEK bench test)

XPS spectra before and after scrubbing

T. Toyama, ECloud 02�

T. Toyama, ECloud 02�

SEYmax of TiN/SS (light blue color)
reduced from 1.9 to 0.8 after sputtering 
with 5 keV Ar+ ions

SEYmax decreased from 1.8 to 1.1 after e-

dosage of ~100mC/mm2 !!!

Ion scrubbing is more effective than ESD

XPS spectra of TiN/SS surface after ESD and 
Ar+ ion sputtering treatments show the removal 
of C and O contaminants and the 
corresponding decrease in SEY

Ion scrubbing cleans surface more effectively 
than e-
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CERN SEY Measurements and SPS Scrubbing

Bench measurement

Dose in 24 hrs:  ~ 0.5 mC/mm2.
> 102 reduction in P after 4 days
> 103 reduction in p after 10 days

Pressure rise evolution (norm. to bunch intensity)
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Field free

Pressure rise showed a conditioning effect

J.M. Jimenez, 13th ICFA, Dec. 2003

1 mC/mm2

N. Hilleret, Chmonix X, 2000

SEY of Cu surface decreased from 2.4 to 1.2
after 1 mC/mm2 of 500eV electrons
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Beam Scrubbing Experience at PSR
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Effect of beam scrubbing in 2003

Correlation of Ion Pump Pulse with Electron Signal

Effect on e-p instability threshold curves

Dose in 24 hrs: ~ 0.035 mC/mm2.
∆P ~ 1 x 10-7 Torr / P ~ 5 x 10-8 Torr.       
Beam intensity threshold increased by x 2.R. Macek, 13th ICFA, Dec 03
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Beam Scrubbing in SNS
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Assume
·Bunch intensity  2x 1014.
·Peak e-current: ~ 3 µA/mm2

·Average e-current: ~ 1 nA/mm2.
·Accumulated dose: ~ 0.1 mC/mm2/24hrs.
· h ~ 0.01 ⇒ ∆P < 1x10-6 Torr with ion pumps 

⇒ ∆P < 1x10-5 by TMP 
(S.Y. Zhang, BNL)

SNS ScrubbingL. Wang, BNL

Reduction of SEY and pressure rise by beam scrubbing
� SLAC & CERN bench tests: ~1mC/mm2 will reduce SEY from 2.2 to 1.3
� KEK sputtering with Ar+ ions reduce SEY from 1.9 to 0.8
� SPS 2002: at P = 5x10-6 Torr x 24 hrs, ~0.5mC/mm2, ∆P reduced by ~100 in 4 days.
� PSR: at P < 2x10-7 Torr x 24 hrs, ~0.04mC/mm2, beam threshold increase by x2
� For SNS scrubbing: continuous inject until the pressure rise to pump limits 

� < 1x10-6 Torr for IP; > 1x10-5 Torr with turbopump. 
� More effective at high pressure (both e and ion bombardment)!
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Summary

� One of the major physics challenges in SNS Ring is
� to collect & control electrons generated at injection, collimators, and 

due to multipacting

� TiN coating to reduce SEY from ~ 2.5 to < 1.9
� SEY depends on coating pressure higher P ⇒ lower SEY
� Coating of inj. ceramic chambers, ext. kicker ferrites, �

� Tapered magnetic field and clearing electrode at Injection stripping foil

� 44 BPMs as clearing electrodes - effective at a few hundred volts

� Solenoids to confine scattered electrons at field free regions
� Bz of 30 Gauss will be sufficient to reduce multipacting

� Beam scrubbing will reduce both SEY and outgassing 
� @ high pressure is more effective (accommodated with TMPs).
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