

Instrumental Effects in Secondary Electron Yield and Energy Distribution Measurements^{†*}

Robert E. Kirby Physical Electronics Group The Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309

[†]Work supported by the U.S. Department of Energy under contract number DE-AC03-76SF00515 (SLAC).

*Presented at the **31st ICFA Advanced Beam Dynamics Workshop on Electron-Cloud Effects**, April 19-23, 2004, Napa, Ca.

5/11/2004

Contributors to SEY at SLAC, 1978-2004

- Ed Garwin, Earl Hoyt, Frank King, Bob Kirby, SLAC
- Takashi Momose, KEK
- Osamu Aita, Osaka Prefecture Univ.
- Frederic Le Pimpec and Mauro Pivi, CERN
- Pilar Prieto, Univ. Autonoma Madrid
- Ali Nyaiesh, Brighton University
- Erhard Kisker, KFA Jülich

Effects

- Secondary "primary" electrons generated inside the source
- Secondary electrons generated inside RFA analyzer or from the chamber
- Surface modification by incident electrons (desorption, carburization, oxidation, damage)
- Substrate effects
- Near-zero energy

Energy Distribution (ED) of Secondary Electrons

Secondary Electron Generation

Extruded-AI Beam Chamber Topography

SEY Measurement - RFA

Strengths: Angular and energy distribution measurements possible Weaknesses: Grid/collimator tertiaries; gun space charge

SEY Measurement - Sample Current

Strengths: Angular measurements; no stray secondaries (with -20V) Weaknesses: Yield does not include elastics; gun space charge; tertiaries from surrounding chamber

SEY Measurement - Sample Retard

Strengths: Simple equipment (no space charge limit with gun);tertiaries rejected after -20V

Weaknesses: No angular measurements; yield does not include elastics

Effects

- Secondary "primary" electrons generated inside the source
- Secondary electrons generated inside RFA analyzer or from the chamber
- Surface modification by incident electrons (desorption, carburization, oxidation, damage)
- Substrate effects
- Near-zero energy

Secondary "Primary" Electrons

Secondary "Primary" Electrons

Beam Current Profile

FC Aperture = 0.25 mm

Secondary "Primary" Electrons

Secondary "Primary" Electrons

Unipotential Electron Gun

Simple electronics, but space charge problem below 200 eV

Fixed Element Voltages

Good performance to < 10 eV, expensive, complex design

Secondary "Primary" Electrons

Yes, but from the 0 V shield!

Effects

- Secondary "primary" electrons generated inside the source
- Secondary electrons generated inside RFA analyzer or from the chamber
- Surface modification by incident electrons (desorption, carburization, oxidation, damage)
- Substrate effects
- Near-zero energy

"Environmental" Tertiaries

RFA Tertiary Electrons

Effects

- Secondary "primary" electrons generated inside the source
- Tertiary electrons generated inside RFA analyzer or from the chamber
- Surface modification by incident electrons (desorption, carburization, oxidation, damage)
- Substrate effects
- Near-zero energy

Causes of Electron-Induced SEY Reduction

- Electron desorption of surface gases, particularly importantly barrier-reducing water and hydrocarbons
- Dissociation of aromatic HCs to low-yield polymerized carbon
- Electron-reduction of high-yield oxides
- Electron-activated grain boundary diffusion of carbon in the presence of hydrogen

Carbon Grain Boundary Diffusion

- Observed on aluminum covered with native oxide and thin γ-alumina
- Surface carbon was produced from electron reduction of CO, both from gas phase and from AI bulk, up the grain boundaries
- Co-adsorption of H₂ increased the surface concentration of CO at hydroxyl sites

From Garwin et al, SLAC Pubs. 392 (1968) and 2716 (1981).

Effects

- Secondary "primary" electrons generated inside the source
- Secondary electrons generated inside detector or from chamber
- Surface modification by incident electrons (desorption, carburization, oxidation, damage)
- Substrate effects
- Near-zero energy

Primary Electron Range (TiN)

(All axes in angstroms)

$$\theta = 0^{\circ}$$
 $\Theta = 83^{\circ}$ $\Theta = 83^{\circ}$

Robert E. Kirby - SLAC

Substrate Effect

Effects

- Secondary "primary" electrons generated inside the source
- Secondary electrons generated inside RFA analyzer or from the chamber
- Surface modification by incident electrons (desorption, carburization, oxidation, damage)
- Substrate effects
- Near-zero energy

Yield From Sputtered (But Disordered) Surfaces

Elastic Reflection

