Experimental Studies of Electron and Gas Sources in a Heavy-Ion Beam*

A.W. Molvik^{1,2}

With contributions from

F.M. Bieniosek^{1,3}, J.J. Barnard^{1,2}, D.A. Calahan², R.H. Cohen^{1,2},
A. Friedman^{1,2}, M. Kireeff Covo^{1,2}, J.W. Kwan^{1,3}, W.R. Meier², L.
Prost^{1.3}, A. Sakumi⁴, P.A. Seidl^{1,3}, G. Westenskow^{1,2}, S.S. Yu^{1,3},
¹ HIF-VNL, ² LLNL, ³ LBNL, ⁴CERN

ECLOUD04 Napa, CA April 19, 2004

OUTLINE

- Introduction to Heavy Ion Fusion (HIF)
- Measurements of gas desorption & electron emission
- Measurements of electrons in quadrupole magnets

Related Papers

Jean-Luc Vay, "Status report on the merging of ECE code POSINST with 3-D accelerator PIC code WARP" Tuesday, pm

Ron Cohen, "Simulations of e-cloud for Heavy-Ion Fusion" Wed. am

Peter Stoltz, "The CMEE Lib. for numerical modeling ECE" Wed. am

Hong Qin, "Delta-f simulations of Electron 2-stream Instab." Wed. am

.....

Target Requirements establish accelerator requirements for power plant driver

HIF Power Plant Driver – Many high-current beams needed to deliver several Mjoules to target with GeV ions

Induction Acceleration can achieve 20-50% efficiency

System studies show that driver cost reduced at high fill factor [fill factor may be limited by ECE or desorption]

(fixed number of beams, initial pulse length, and quadrupole field strength)

HIF-ECE distinguishing features

- Economic mandate to maximally fill beam pipe ions scrape wall
- Linac with high line charge density (Beam potential $\phi_b > 1 \text{ kV}$)
- - If beam head scrapes: gas desorbed ($\Gamma_0 \sim 10^3$ 10⁴) and secondary e⁻ ($\Gamma_e \sim 100$) trapped by rising ϕ_b . Control of beam head is essential.
 - If beam flattop scrapes: gas desorbed, SEY not necessarily trapped.
 - If desorbed gas reaches beam: e⁻ from ionized gas are deeply trapped by φ_b, cold ions expelled. This is expected to be main e⁻ source in HIF, especially near injection energies (10-100 keV/amu) where atomic cross sections peak (~10⁻¹⁵ cm²).
 - Electrons are trapped for time to drift through 1 magnet, then expelled.
- Beam-induced multipactor not present
- Trailing-edge multipactor not an issue (≥0.2 s between pulses).

Molvik, ECloud04, 7

Beam hitting gas or walls creates electrons and gas — these can multiply

These interaction products create rich opportunities for diagnostics along with problems for diagnostics and beams

Molvik, ECloud04, 8

HCX layout for ECE studies in magnetic quads

- ECE experiments began with diagnostics mounted on insert tubes within magnetic quads MA3 & MA4.
- Later experiments removed insert tubes, added electron-suppressor after MA4 and clearing electrodes between magnets.

Molvik, ECloud04, 9

Measure electron emission Γ_{e} and gas desorption Γ_{0} from 1 MeV K⁺ beam impact on target

Gas, electron source diagnostic (GESD)

- Measure coefficient of electron Γ_e and gas emission Γ_0 per incident K⁺ ion.
- Calibrates beam loss from electron currents to flush wall electrodes.
- Evaluate mitigation techniques: baking, cleaning, surface treatment...
- Measuring scaling of Γ_0 with ion energy test electronic sputtering model

GESD secondary electron yield (SEY) varies with $cos(\theta)^{-1}$, secondary energy T_e = 30 eV

- Simple model gives cos(θ)⁻¹
 - Delta electrons pulled from material by beam ions (dE/dx)
 - Electrons from depth $> \delta$ ($\delta \sim$ few nm) cannot leave surface
 - Ion path length in depth δ is L. L = $\delta / \cos(\theta)$
- Results depart from this near grazing incidence where the distance for nuclear scattering is < L¹

 $\mathsf{L} = \delta / \mathsf{cos}(\theta)$

1. P. Thieberger, A. L. Hanson, D. B. Steski, et al., Phys. Rev. A 61, 42901 (2000).

Rough surface mitigates ion-induced electron emission, gas desorption, and ion scattering

Electron studies in magnetic quads —Initial studies with diagnostics mounted on 5.5 cm diameter tube in quad.

- 180 mA full beam scraped cylindrical diag. tube
 - Diagnostics difficult to interpret
- 15-25 mA apertured beam, mostly not scraping wall
 - Capacitive probes measure ϕ_b (With apertured beam signals approximate expectations $\Rightarrow n_e \le n_b$)

- Flush probes (right) measure secondary electron emission, from which we infer beam loss and gas desorption.
- Goal measure accumulation of electrons and gas
 - This may require diagnostics functioning with electrons / gas present.
 - Develop mitigation techniques to increase performance.

Molvik, ECloud04, 13

Puzzle solved: negative spike at end-of-pulse varies with bias on BPM, caused by SEY from beam loss

Integrated charge to flush full-length collectors in quad magnets – ok at head, but tail?

Q_{beam} unless electrons supplied from outside this beam tube.

Molvik, ECloud04, 15

Progress towards high quality beam transport – electron effects only part of picture

• Beam split into 3, going through a 5.5 cm diam. circular bore (Imaged on scintillator, after beam passes through a slit)

- Slight improvement from opening bore to 6
 x 10 cm elliptical bore without suppressor.
- 3-shots shown: still not reproducible.
- Electron suppression added between quad. magnets and scintillator – blocks secondary electrons ⇒ trifurcation an ECE
- Scintillator image of beam through a slit is much cleaner
- Quad magnetic field errors: harmonics $\leq 1\%$, $\leq 1mm$, $\leq 1^{\circ}$ (?)
- Simulations predict retuning of electrostatic and magnetic quads will eliminate beam loss.

Molvik, ECloud04, 16

Simulations: centering beam and minimizing envelope changes reduces halo growth*

New tools: suppressor ring, clearing electrodes between quads

- Suppressor blocks electrons from quads – improves beam quality
- Clearing electrodes work: upstream indep. of downstream changes
- Measure drift velocity of e? $\sum_{v=2}^{v} 2I_{c}$

$$\frac{v_e}{v_b} = \frac{2I_e}{I_b} = 0.14$$

 Can suppressor reduce e⁻ to reproducible trickle?

Compare capacitive electrode (MA4) with timederivative of beam current (Faraday cup)

Near-term upgrades to ECE experiments on HCX

Mid-FY04: New octagonal diagnostic tubes approximate elliptical shape to pass larger beams without scraping walls – study full beam without aperturing.

<u>Later-FY04</u>: Addition of induction cores between magnets: can accelerate electrons in gap to energy $E_e > \phi_b$. They will be lost to wall in upstream magnet.

Molvik, ECloud04, 20

HIF-ECE Experimental Summary/conclusions

ECE (mostly from desorption) likely to influence allowable fill factor, and therefore cost of HIF Driver for power plant.

- Gas desorption Γ_0 large testing electronic sputtering model
- Rough surface reduces emission, desorption, & scattering.
- Beam transport through 4 magnetic quads, with high fill factor – ok. Progress in understanding diagnostic signals.
- Simulation plays significant role in improving performance.

Electron suppressor necessary at magnet exit.
Clearing electrodes remove electrons in drift region.

new tools for ECE in linacs

Backup material

HIF-ECE distinguishing features

- Economic mandate to maximally fill beam pipe ions scrape wall
- Linac with high line charge density (Beam potential $\phi_b > 1 \text{ kV}$)
- - Long (ish) pulse duration 0.2-20 µs [Time for desorbed gas to reach beam and be ionized? But no beam-induced multipactor]
 - 5 Hz rep. rate [time to pump desorbed gas?]
 - >50% of length at injector occupied by quadrupoles, v_{e-drft} < v_{e-thermal}
 - lonized gas e⁻ are born trapped, e⁻ from wall may not be trapped
 - Multiple beams and frequent accel gaps [Pump gaps or cold bores?]
 - Large neutral desorption coefficients at pipe wall ($\Gamma_o \sim 10^3 10^4$)
 - Injection energies near peak atomic cross-sections [10-100 keV/amu]
- Heavy-ions stripping cross sections $\sigma \propto E^{-0.5}$, $\sigma v \propto E^{0}$; don't win at high energy like proton accelerator where $\sigma \propto E^{-1}$

In search of a mechanism for gas desorption

Current-Voltage characteristics of GESD Faraday cup and target, indicate reliable current measurements

 Positive Faraday cup measures electrons from ionization of desorbed gas.

- Saturation of target current indicates reliable measurement of electron emission.
- Electron emission coefficient is ratio of electron emission current to incoming ion-beam current from Faraday cup.

Molvik, ECloud04, 25

