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OUTLINE

• Introduction to Heavy Ion Fusion (HIF)

• Measurements of gas desorption & electron emission

• Measurements of electrons in quadrupole magnets

Related Papers

Jean-Luc Vay, “Status report on the merging of ECE code POSINST with 3-D

accelerator PIC code WARP” Tuesday, pm

Ron Cohen, “Simulations of e-cloud for Heavy-Ion Fusion” Wed. am

Peter Stoltz, “The CMEE Lib. for numerical modeling ECE” Wed. am

Hong Qin, “Delta-f simulations of Electron 2-stream Instab.” Wed. am
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3 - 7 MJ     x    ~ 10 ns               ⇒⇒⇒⇒     ~ 500 Terawatts

Ion Range:     0.02 - 0.2 g/cm2  ⇒⇒⇒⇒          1- 10 GeV 

Beam charge (3-7 MJ/1-4 GeV) ⇒⇒⇒⇒    few mCoul

Target Requirements establish accelerator
requirements for power plant driver

0.7 cm

1.5 cm
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HIF Power Plant Driver – Many high-current beams needed
to deliver several Mjoules to target with GeV ions

120 beams
Multibeam (120)

Accelerator

E = 1.6MeV
 I = 0.63A/beam
T = 30µµµµs
120 beams

E = 4.0GeV
 I = 94.A/beam
T = 0.2µµµµs

A = 209amu (Bi)
q = +1
L = 2.9km

E = 4.0GeV
 I = 1.9kA/beam
T = 10 ns
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Induction Acceleration can achieve 20-50%
efficiency

B

Efficiency increases as current increases

⇓⇓⇓⇓

Multiple beams within
single induction core
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System studies show that driver cost reduced at high fill
factor [fill factor may be limited by ECE or desorption]
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HIF-ECE distinguishing features

• Economic mandate to maximally fill beam pipe - ions scrape wall

• Linac with high line charge density (Beam potential φφφφb > 1 kV)

• Induction accelerator characteristics          0.2-30 µs

- If beam head scrapes: gas desorbed (ΓΓΓΓ0 ~ 103- 104) and secondary e- (ΓΓΓΓe

~ 100) trapped by rising φφφφb. Control of beam head is essential.

- If beam flattop scrapes: gas desorbed, SEY not necessarily trapped.

- If desorbed gas reaches beam: e- from ionized gas are deeply trapped
by φφφφb, cold ions expelled. This is expected to be main e- source in HIF,

especially near injection energies (10-100 keV/amu) where atomic cross
sections peak (~10-15 cm2).

- Electrons are trapped for time to drift through 1 magnet, then expelled.

• Beam-induced multipactor not present

• Trailing-edge multipactor not an issue (≥≥≥≥0.2 s between pulses).
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Beam hitting gas or walls creates electrons and
gas — these can multiply

Beam on gas, Ib

K0

K2+

K+ Beam

1.0-1.8 MeV

2-5 kV potential

γ
γ

e-

i+

Beam loss to walls, Ibw

Fe

K+ Beam

K+

γ
e-

n0

n0

These interaction products create rich opportunities for
diagnostics along with problems for diagnostics and beams
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HCX layout for ECE studies in magnetic quads

• ECE experiments began with diagnostics mounted on insert tubes
within magnetic quads MA3 & MA4.

• Later experiments removed insert tubes, added electron-suppressor
after MA4 and clearing electrodes between magnets.

QI-10 D2

MA1 MA2 MA3 MA4

e-suppressor
D-end

Slits, optical diagnostics

e clearing
Electrodes
(+10 kV)

Optical
Diagnostics
≈ 1-17-04

Electrostatic transport magnetic transport Diagnostics
on insert
tube

Gas-Electron
Source Diagnostic
(GESD)
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Measure electron emission ΓΓΓΓe and gas desorption ΓΓΓΓ0 from
1 MeV K+ beam impact on target

Gas, electron source diagnostic (GESD)

• Measure coefficient of electron Γe and gas emission Γ0 per incident K+ ion.

• Calibrates beam loss from electron currents to flush wall electrodes.

• Evaluate mitigation techniques: baking, cleaning, surface treatment…
• Measuring scaling of Γ0 with ion energy – test electronic sputtering model

Ion gauge

Target, angle
~2o-15o

Reflected ion
collector

Electron
Suppressor

Beam

Suppressor grid

Grid & target bias varied

Faraday cup

Beam

Tiltable target
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GESD secondary electron yield (SEY) varies
with cos(θθθθ)-1, secondary energy Te = 30 eV

θ δ

L

L = δ /cos(θ)

• Simple model gives cos(θ)-1

- Delta electrons pulled from
material by beam ions (dE/dx)

- Electrons from depth  > δ  (δ~
few nm) cannot leave surface

- Ion path length in depth δ is L.
L = δ /cos(θ)

• Results depart from this near
grazing incidence where the
distance for nuclear scattering
is < L1

1. P. Thieberger,A. L. Hanson, D. B. Steski,
et al., Phys. Rev. A 61, 42901 (2000).
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Rough surface mitigates ion-induced electron
emission, gas desorption, and ion scattering
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• Surface roughened by glass-bead
blasting (Inexpensive, but can warp
surface)

• Angle of incidence: grazing ⇒ ~60o

[from 1/cos emission]
• Sawtooth surface (CERN-SPS) more

effective, but more expensive.

x10

X2-3

Electron emission

Gas desorption

0.0001

0.0010

0.0100

0.1000

1.0000

0 30 60 90
Angle from normal (deg.)

B
ac

ks
ca

tt
er

 c
oe

ff
ic

ie
nt X30 (Rough)

Ion backscattering - SRIM

X1000 (Sawtooth)



The Heavy Ion Fusion Virtual National LaboratoryMolvik,  ECloud04, 13

Electron studies in magnetic quads — Initial studies with
diagnostics mounted on 5.5 cm diameter tube in quad.

Goal — measure accumulation of electrons and gas
- This may require diagnostics functioning with electrons / gas present.
- Develop mitigation techniques to increase performance.

• 180 mA full beam – scraped cylindrical diag. tube
- Diagnostics difficult to interpret

• 15-25 mA apertured beam, mostly not scraping wall
- Capacitive probes measure φb (With apertured beam

signals approximate expectations ⇒ ne ≤ nb)
- Flush probes (right) measure secondary electron

emission, from which we infer beam loss and gas desorption.
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Puzzle solved: negative spike at end-of-pulse varies with
bias on BPM, caused by SEY from beam loss

BPM

Halo loss and scattered ions
generate secondary e- 

B
Few e- off collectorMany e- to

collector

Loss of 0.6% of beam can produce e- pulse at tail

QM1 electrode monitor (positive)
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Integrated charge to flush full-length collectors in
quad magnets – ok at head, but tail?

Qhead ≈ (0.8-1.0) QBeam QTail ≈ 3 x QBeam

Qbeam ≡ λ(µCoul/m) l = Beam charge within magnet of length l

– Why?

Gradual growth of negative signal: Measured Q can’t exceed
Qbeam unless electrons supplied from outside this beam tube.

Head: can’t distinguish
• Capac. Pickup
• SEY from electrode

Tail: can’t distinguish
• Capac. Pickup
• e- to electrode



The Heavy Ion Fusion Virtual National LaboratoryMolvik,  ECloud04, 16

Progress towards high quality beam transport
– electron effects only part of picture

 

• Electron suppression added between quad. magnets and
scintillator – blocks secondary electrons ⇒ trifurcation an ECE

• Scintillator image of beam through a slit is much cleaner
• Quad magnetic field errors: harmonics ≤1%, ≤1mm, ≤1° (?)
• Simulations predict retuning of electrostatic and magnetic

quads will eliminate beam loss.

• Beam split into 3, going through a 5.5 cm diam. circular bore
(Imaged on scintillator, after beam passes through a slit)

•  Slight improvement from opening bore to 6

x 10 cm elliptical bore without suppressor.

• 3-shots shown: still not reproducible.
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Simulations: centering beam and minimizing
envelope changes reduces halo growth*

*Steven Lund, private communi-
cation 2004.

• Elliptical-quad-magnet
beam tube

• Diagnostic tube-II
• Dashed red lines from

envelope code, solid from
XY PIC Code – PIC shows
larger excursions

• Retuning required
upstream to match into
magnets.

Phase-II 
diagnostics
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New tools: suppressor ring, clearing electrodes between quads

• Suppressor blocks
electrons from quads –
improves beam quality

• Clearing electrodes work:
upstream indep. of down-
stream changes

• Measure drift velocity of e-?
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• Capac. electrode:
polarity varies with Vs

• Can suppressor
reduce e- to
reproducible trickle?
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Compare capacitive electrode (MA4) with time-
derivative of beam current (Faraday cup)
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Mid-FY04: New octagonal
diagnostic tubes
approximate elliptical shape
to pass larger beams
without scraping walls –
study full beam without
aperturing.

Later-FY04: Addition of
induction cores between
magnets: can accelerate
electrons in gap to energy
Ee > φφφφb. They will be lost to
wall in upstream magnet.

Induction core
quadrupole

diagnostics

Support rail

present: 54 mm

new: 79 mm

Near-term upgrades to ECE experiments on HCX
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HIF-ECE Experimental Summary/conclusions

• Gas desorption Γ0 large – testing electronic sputtering model

• Rough surface reduces emission, desorption, & scattering.

• Beam transport through 4 magnetic quads, with high fill

factor – ok. Progress in understanding diagnostic signals.

• Simulation plays significant role in improving performance.

new tools
for ECE
in linacs

• Electron suppressor necessary at magnet exit.

• Clearing electrodes remove electrons in drift region.

ECE (mostly from desorption) likely to influence allowable fill

factor, and therefore cost of HIF Driver for power plant.
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Backup material
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HIF-ECE distinguishing features

• Economic mandate to maximally fill beam pipe - ions scrape wall

• Linac with high line charge density (Beam potential φφφφb > 1 kV)

• Induction accelerator characteristics          0.2-20 µs

- Long (ish) pulse duration 0.2-20 µs [Time for desorbed gas to reach
beam and be ionized? But no beam-induced multipactor]

- 5 Hz rep. rate [time to pump desorbed gas?]

- >50% of length at injector occupied by quadrupoles, ve-drft < ve-thermal

- Ionized gas e- are born trapped, e- from wall may not be trapped

- Multiple beams and frequent accel gaps [Pump gaps or cold bores?]

- Large neutral desorption coefficients at pipe wall (ΓΓΓΓo~103 - 104)

- Injection energies near peak atomic cross-sections [10-100 keV/amu]

• Heavy-ions – stripping cross sections σσσσ ∝∝∝∝ E-0.5, σσσσ v ∝∝∝∝ E0; don’t win at
high energy like proton accelerator where σσσσ ∝∝∝∝ E-1
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K+ on SS
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In search of a mechanism for gas desorption

• SEY = secondary emission coef.

• Γ0 = Gas desorption coef.

• Γ0 scales with dE/dx(elec) for electronic sputtering

• Improved background subtraction for 300 kV_a

[Compare open vs. solid green diamonds]

• Experiments and analysis continuing
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Current-Voltage characteristics of GESD Faraday cup
and target, indicate reliable current measurements

GESD Faraday Cup I-V Characteristic, Vs=-200 V, Vg=-150 V, Data 
1 0 / 3 0 / 0 2 .

-1 .500

-1 .000

-0 .500

0.000

0.500

1.000

-200 -100 0 100 200

Faraday cup (Target) voltage (V)

C
u

rr
en

t 
(m

A
)

• Negative Faraday cup measures
beam current into GESD.

• Positive Faraday cup measures
electrons from ionization of desorbed
gas.

• Saturation of target current
indicates reliable measurement of
electron emission.

• Electron emission coefficient is
ratio of electron emission current
to incoming ion-beam current from
Faraday cup.

Desorbed
gas ionization

Saturation

Electron
emission

Suppressor (-150 V) Faraday cup
Beam

Electron
emission

Use Faraday
cup to measure
beam current


