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OUTLINE

* Introduction to Heavy lon Fusion (HIF)
« Measurements of gas desorption & electron emission

« Measurements of electrons in quadrupole magnets
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Target Requirements establish accelerator
requirements for power plant driver

3-/7MJ x ~10ns = ~ 500 Terawatts
lon Range: 0.02-0.2g/cm? = 1- 10 GeV

Beam charge (3-7 MJ/1-4 GeV) = few mCoul
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HIF Power Plant Driver — Many high-current beams needed
to deliver several Mjoules to target with GeV ions
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Induction Acceleration can achieve 20-50%
efficiency

Efficiency increases as current increases

|

Incoming pulse from
pulse forming line

Acceleration

gap Multiple beams within

single induction core

Ferromagnetic cores
(high inductive impedance)
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System studies show that driver cost reduced at high fill
factor [fill factor may be limited by ECE or desorption]

IBEAM results:
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HIF-ECE distinguishing features

« Economic mandate to maximally fill beam pipe - ions scrape wall
 Linac with high line charge density (Beam potential ¢, > 1 kV)

* Induction accelerator characteristics / 0.2-30 us \

- If beam head scrapes: gas desorbed (I, ~ 103- 104) and secondary e (T",
~ 100) trapped by rising ¢,. Control of beam head is essential.

- If beam flattop scrapes: gas desorbed, SEY not necessarily trapped.

- If desorbed gas reaches beam: e- from ionized gas are deeply trapped
by ¢, cold ions expelled. This is expected to be main e~ source in HIF,

especially near injection energies (10-100 keV/amu) where atomic cross
sections peak (=105 cm?).
- Electrons are trapped for time to drift through 1 magnet, then expelled.
« Beam-induced multipactor not present

» Trailing-edge multipactor not an issue (20.2 s between pulses).
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Beam hitting gas or walls creates electrons and
gas — these can multiply

Beam on gas, |, Beam loss to walls, I,

Fe
N | |IK

These interaction products create rich opportunities for
diagnostics along with problems for diagnostics and beams
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HCX layout for ECE studies in magnetic quads

Elecrode P-end
ectrodes
QI-10 D2 (+10 k) e-suppressor
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(GESD)

« ECE experiments began with diagnostics mounted on insert tubes

within magnetic quads MA3 & MAA4.

» Later experiments removed insert tubes, added electron-suppressor
after MA4 and clearing electrodes between magnets.
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Measure electron emission I', and gas desorption I';, from
1 MeV K* beam impact on target

Gas, electron source diagnostic (GESD)

Suppressor grid
lon gauge
~~~~~~ ‘ —
Faraday cup \ "\\‘/,\'
| Reflected iet? |
' collector
Bean_j
T'!

Electrob Grid & target bias varied

Suppressor

Tlltable target

» Measure coefficient of electron I', and gas emission I', per incident K* ion.
e Calibrates beam loss from electron currents to flush wall electrodes.

» Evaluate mitigation techniques: baking, cleaning, surface treatment...
« Measuring scaling of I', with ion energy — test electronic sputtering model
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GESD secondary electron yield (SEY) varies
with cos(0)*, secondary energy T, =30 eV

150

90

« Simple model gives cos(6)- 5 %
- Delta electrons pulled from -% /%
material by beam ions (dE/dx) 5 100 /6
- Electrons from depth > ¢ (6~ 3 '
few nm) cannot leave surface 5 | j/
- lon path length in depth 8isL. & *7 o ==V
L = 0 /cos(0) g | — :ggﬁ(ﬂcg%)
e Results depart from this near DO S N S S A
grazing incidence where the ° w8 & 8 8 8B
distance for nuclear scattering 1000 1ngle from normal (deg.)
IS < L1 5 -
::’ 10.0
EED 1.0
3

L = 0 /cos(6)

0.1

1. P. Thieberger,A. L. Hanson, D. B. Steski,
et al., Phys. Rev. A 61, 42901 (2000).
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Rough surface mitigates ion-induced electron

emission, gas desorption, and ion scattering
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» Surface roughened by glass-bead | Electron emission / s
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Electron studies in magnetic quads —lnitial studies with
diagnostics mounted on 5.5 cm diameter tube in quad.

————N
—— ——

n

180 mA full beam — scraped cylindrical diag. tube

- Diagnostics difficult to interpret
15-25 mA apertured beam, mostly not scraping wall
- Capacitive probes measure ¢, (With apertured beam

signals approximate expectations = n_<n,)

- Flush probes (right) measure secondary electron
emission, from which we infer beam loss and gas desorption.

- =
N

Goal — measure accumulation of electrons and gas
- This may require diagnostics functioning with electrons / gas present.

- Develop mitigation techniques to increase performance.




Puzzle solved: negative spike at end-of-pulse varies with
bias on BPM, caused by SEY from beam loss

Halo loss and scattered ions
generate secondary e- match dlg,,,/dt except for burst at

end of pulse [L. Prost, Ph.D thesis]
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Integrated charge to flush full-length collectors in
guad magnets — ok at head, but tail?

Qpeam = MHCoul/m) [ = Beam charge within magnet of length /

Qhead = (0-8'1-0) QBeam

QTaiI ~ 3 X QBeam
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Progress towards high quality beam transport
— electron effects only part of picture

« Beam split into 3, going through a 5.5 cm diam. circular bore
(Imaged on scintillator, after beam passes through a slit)

 Slight improvement from opening bore to 6
X 10 cm elliptical bore without suppressor.
» 3-shots shown: still not reproducible.

 Electron suppression added between quad. magnets and
scintillator — blocks secondary electrons = trifurcation an ECE

 Scintillator image of beam through a slit is much cleaner

* Quad magnetic field errors: harmonics <1%, <1mm, <1° (?)

e Simulations predict retuning of electrostatic and magnetic
guads will eliminate beam loss.
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Simulations: centering beam and minimizing
envelope changes reduces halo growth*

Selt-Field Potential and Particles: Z = 1.111

XY PIC Code: Y-Extreme Particles 1a7and 2
Phase-II ] osor :
diagnostics =
E’-E 0- 1 EO— ]
g = -
« Elliptical-quad-magnet
beam tube — 1
. . t 50 | |
 Diagnostic tube-ll — o —— T 1 b
. 0 1 2 =30 0 50
e Dashed red lines from Axial Coordinate Z (m) o X@m)

. XY PIC Code: Y—Extreme Particles Selt=tield Potential and Particles: 2= 1.1 1
envelope code, solid from o Ty [ ]
XY PIC Code — PIC shows - — 1t
larger excursions =

» Retuning required < _
upstream to match into g
magnets. >
*Steven Lund, private communi- Y _ ] -so- N | ]
cation 2004. 0 1 2 -50 0 50
Axial Coordinate Z (m) X (mm)
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New tools: suppressor ring, clearing electrodes between quads

o Suppressor blocks
electrons from quads —

i Capa
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Compare capacitive electrode (MA4) with time-

derivative of beam current (

—araday cup)

Head — Consistent with electrons

<13% of beam charge.

Cap.-probe ——»

Vi

< lep ’L

C-probe(MA4) & dI/dt(FC-D2)

d(Ib) (Al(t+012us) Al(t))ICp

where [,=0.12 s (v,)
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-0.06 +
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004
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0 oo ons)

— CapProbe(uC)
— <d/dt(FarCup)>

2Vb
C-electrode | dI/dt(FC) @ Fraction e
(uCoul) (LCoul)
Head  0.020 0.023 0.13
Tail | -0.033 -0.022 ?
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Near-term upgrades to ECE experiments on HCX

present: 54 mm

Mid-FY04: New octagonal
diagnostic tubes
approximate elliptical shape
to pass larger beams
without scraping walls —
study full beam without
aperturing.

e
- new: 79 mm

guadrupole
diagnostics

Later-FY04: Addition of
Induction cores between
magnets: can accelerate

electrons in gap to energy
E. > ¢,. They will be lost to

wall in upstream magnet.

Support rail
7
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HIF-ECE Experimental Summary/conclusions

ECE (mostly from desorption) likely to influence allowable fill

factor, and therefore cost of HIF Driver for power plant.

e Gas desorption I'; large — testing electronic sputtering model

* Rough surface reduces emission, desorption, & scattering.

e Beam transport through 4 magnetic quads, with high fill
factor — ok. Progress in understanding diagnostic signals.

e Simulation plays significant role in improving performance.

new tools

_ o : for ECE
» Clearing electrodes remove electrons in drift region. | i |inacs

« Electron suppressor necessary at magnet exit.
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Backup material
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HIF-ECE distinguishing features

« Economic mandate to maximally fill beam pipe - ions scrape wall

 Linac with high line charge density (Beam potential ¢, > 1 kV)
* Induction accelerator characteristics / 0.2-20 us \

Long (ish) pulse duration 0.2-20 ps [Time for desorbed gas to reach
beam and be ionized? But no beam-induced multipactor]

5 Hz rep. rate [time to pump desorbed gas?]

>50% of length at injector occupied by quadrupoles, V_ i+ < Veinermal
lonized gas e are born trapped, e from wall may not be trapped
Multiple beams and frequent accel gaps [Pump gaps or cold bores?]
Large neutral desorption coefficients at pipe wall (I';,~103 - 104)

Injection energies near peak atomic cross-sections [10-100 keV/amu]

e Heavy-ions — stripping cross sections o o« E95 o v o« E% don’t win at
high energy like proton accelerator where ¢ «< E*
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In search of a mechanism for gas desorption

dE/dx (MeV/mg/cm2)

« SEY = secondary emission coef. o
» [, = Gas desorption coef. e | :f*;
e T R
[, scales with dE/dx(elec) for electronic sputtering , [ fos| =, ;;*“ :
3 owva -, 44 Z ¢ )
. 3 $ 4 8 et
» Improved background subtraction for 300 kV_a oo ; ,,,,,, T S
¢ .:g ‘ ’ ' v . : "
[Compare open vs. solid green diamonds] S L
» Experiments and analysis continuing W w w w % w w
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Current (mA)

Current-Voltage characteristics of GESD Faraday cup
and target, indicate reliable current measurements

* Negative Faraday cup measures
beam current into GESD.
o Positive Faraday cup measures

electrons from ionization of desorbed

gas.
Suppressor (-150 V) Il

%&aday cup
. Beam

I
GESD Faraday Cup |-V Characteristic, Vs=-200 V, Vg=-150 V, Data
10/30/02.
. Saturation
—
T Desc_:nrb_ed .
as lonization

Electron \’\g\_\
“Temission \
-200 -100 0 100 200

Faraday cup (Target) voltage (V)

Target Current (mA)

15 R I I ]

<& ¢ o
i o ]
I G Use Faraday
- Electron o cup to measure
- emission ¢ beam current -
I %} —A—
£
9
o R0 6 o o
*57 \\\\\\\\\ Lov v 0 IS Lvv vy Lov v v v vy
—200 —100 0 100 200 300

T—G Bias Voltage (V)

Saturation of target current
Indicates reliable measurement of
electron emission.

Electron emission coefficient is
ratio of electron emission current
to incoming ion-beam current from
Faraday cup.
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