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OUTLINE

 Distinguishing features of ecloud issues for HIF
* Qur plan for self-consistent modeling
« Example with wall electron sources

» Electron effects on ions: simulations with specified
electron distributions

* Preliminary results for averaged electron dynamics
* Summary

Related papers:

Molvik et al (Monday p.m.)
Vay et al (Tues. p.m.)
Stoltz et al (next paper)
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Artist’s Conception of an HIF Power Plant on a few km? site
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HIF accelerators have distinguishing features that
impact electron cloud issues

Compared to other accelerator applications:

« Many common issues and concerns, but also application-
specific features

« Distinguishing aspects of HIF accelerators (U.S. main line with
magnetic quadrupole focusing):

— Linac with high line charge density

— Induction accelerator --

 hard to clean beam pipe = large neutral emission coefficient at
pipe wall (> 104 per lost ion)
« Beam pipe only in quad magnets => scrape-off only in quads

— Economic mandate to maximally fill beam pipe

— Large fraction of length occupied by quadrupoles (>50% at
injector end)

— Long(ish) pulses -- multi-ys at injector end
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Consequences 1

* Linac, so multiturn resonance not an issue
— But long pulse = still instability if e-e SEY > 1
« Electrons largely confined to the quadrupole in which they are

born, and electron density smaller in gaps than in quads;
consequences of:

— Beam pipe only in quads; strongly magnetized electrons
— Time to drift out of a quad ~ pulse durations

— Accelerating gaps between quads, which enable electrons to
overcome space charge potential

Important implications for potential instabilities.

 Filling pipe as much as possible = ion scrape-off major source
of electrons
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Consequences 2: Electrons from gas released at walls in
quads dominate

« ¢ from ionization of neutrals released n, " 4°¢
from walls dominates for long (multi-us) 0
pulses. K* Beam

— Born trapped by beam potential
« Bounce radially

« Drift axially

» Acquire enough energy in gap to escape

* Hence 1, ~ time to drift through 1 quad o
* For shorter pulses: wall-born electrons

from ion bombardment

— Nominal lifetime 1 transit (during beam
flattop)

— e from scrapeoff of beam ions: mainly on
field lines that stay close to wall.

— For small fraction born on field lines that
penetrate deep into interior, collisionless

pitch-angle scattering (nonadiabaticity) can
make lifetime much longer
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Consequences 3: we absolutely need to do e-cloud
_generation + e, i dynamics self-consistently

« Because of size of beam-scrape-off sources and long pulse,
electron-ion interaction affects electron sources
« Especially challenging for us because

— Timescales: need to deal with electrons in and between
quads, so must deal with electron cyclotron motion yet follow
ion dynamics (can’t analytically integrate the cyclotron motion)

— Variety of e-cloud sources

« But - it may be that other e-cloud applications will also have
this same need and face the same challenges
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Toward a self-consistent model of electron effects

« Plan for self-consistent electron physics modules for WARP
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« Key: operational; implemented, testing; partially implemented; offline
development
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Example of current capability: wall-born electrons
from primary and secondary ion bombardment

 WARP ion slice simulation, 400,000 ions
— 100 lattice-period transport system (no acceleration)
— Misaligned magnets (500 um) to exaggerate beam scrapeoff
« Gather data for ions impacting wall (6282 ions), and calculate:
— Electrons produced (from simple fit to Molvik et al data)

— Scattered ion population (3629 ions), from TRIM Monte-Carlo
code

* Follow the scattered ions in 3-D Warp until they next impact
wall.

« Calculate electrons produced by those ions

« Follow dynamics of electrons produced by primary and
scattered ion impacts with 3-D WARP; accumulate electron
charge density

PPPL
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Calculation of n_, from wall-born electrons shows

importance of following scattered ions

« Full-orbit calculations of o0 [} oceare
electrons born near wall from 0005167
impact of lost beam ions

-0.0023549

0.0011713

— Based on initial ion-wall | 0.000se2se
impacts: cloud confined to
wall near beam ellipse tips

| 0.00028977
0.00014413
7.1686€-05
3.5656€-05
1.7735e-05
8.8209e-06
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0

" 0.038476

- 0.018137
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— Dramatic difference if we 7.16860-05
follow scattered ions and add roeos

in the electrons THEY .
produce i?d18220-05
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lon simulations with legislated electron clouds show level of
acceptable density and highlight areas for concern

« Perform ion simulations with legislated negative charge
distributions to mock up electrons

« All choices have constant parameters within a quad, but
variable from quad to quad:

— Const n,
— Random cloud amplitude variations
— Sinusoidal cloud variations, with period chosen to match a
beam natural mode
« Breathing (amplitude or shape)
» Centroid oscillations (dipole mode)
« Elliptical distortion oscillations (quadrupole mode)
— Types of electron cloud variations studied (in all cases the
perturbation is axially constant within a quadrupole, and
varies from quad to quad):
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Types of electron cloud perturbations specified
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(random direction)
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20% constant n_ has little effect
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20% mean, 0-40% random n_ produces significant
beam loss, envelope growth, halo
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20% n, with random transverse offsets produces

intermediate beam loss, halo, emittance growth
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20% n, with random radial shape variation somewhat

worse than const but much better than random amplitude
T T T , 7 10.81

0.02

0.00

o0 10.8085

)
&)
c
©
=
=
& .
O asf y
o
5 (c)
L
ﬂ.ﬂ.r PE—1 . | — PE—1 i i _1I
i 54_! o 100
Lattice periods s(m) > 1 _pppL
s The H lon Fusion Virtual National Laborat @ 1
e T—— € feavy lon rusion Vvirtua ational Laboratory = %ﬁ



RESONANT perturbations are more damaging: 0-10%
sinusoidally varying n_ resonant with breathing mode
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RESONANT perturbations are more damaging: 0-10%
smusmdally varylng n, resonant W|th breathlng mode
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Ecloud offset (10% n_) displaces ion beam enough for

significant scrape

T

I+ -
002 (a)
o |
0.00 |-
0.02 -
@
O
c
T
=
S
E HEY
)
)
(o)
Yi
()
ﬂ-ﬂﬂ I 5I|:|

Lattice periods

1D

off but little halo or emittance growth

D.a1

AT L 10.81
| () \\& |
E%

..I
'll

o] 10.77

0.018

=
™

)y envelope (m)

X

0.0

- 4 SN S T T—1 - L
a i0 20 30 4

s(m)

mm—The Heavy lon Fusion Virtual National Laboratory - mmmmmm— <=« E %x\jPPPI,

R. Cohen, ECloud04, -19-



Sinusoidal radial shape variation (10% n_, resonant with

breathing) less effective than amplitude modulation
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Ellipticity resonant with g-pole oscillation (10% n_) produces
small beam Ioss but more bulk emlttance growth
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These resonant perturbations are potentially a source of
instability
* |on envelope breathlng in phase W|th e oscillations
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Electrons ~ immobile in beam direction due to quadrupoles
Perturbation will grow
Doesn’t require const wavenumber (acceleration allowed)
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More on instability

Crude, semi-empirical growth rate (assumptions: coasting beam; wall
gas desorption dominates e- production; neglect neutral time of flight;
resonant beam loss x n,):

ﬂ = nan<O-Vi> dNﬂ
dt dt

with A=area, x,, = neutrals released per incident ion, N=nV with V=beam
volume

Yields exponential growth with e-folding time:

= Al K,

1/2

e

n, <OV>KnA[b

n Ve . :
[ ~ 3 ps for simulation parameters (~ t,)

Growth limited by:

— Velocity tilt

— Beam current loss

— Finite neutral transit time

= 7
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Self-consistent e-i simulation requires technique to
bridge timescales

* Need to follow electrons through strongly magnetized and
unmagnetized regions = need to deal with electron cyclotron

timescale, ~ 1011 sec.
e |on timescales > 108 sec.

« Algorithm to bridge: interpolation between full-electron
dynamics (Boris mover) and drift kinetics (motion along B plus
drifts).

* Properly chosen interpolation allows stepping electrons on
bounce timescale (~10 sec) yet preserves:
— Dirift velocity
— Parallel dynamics
— Physical gyroradius

SPPPL
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Interpolated mover: first tests meet expectations

« Compare full orbit to interpolated mover (10x dt).

« Single orbit comparisons of some regular and nonadiabatic (chaotic)

orbits:

— Good agreement on drift & bounce velocity, orbit size for regular orbits

— Expected non-agreement for chaotic orbits (expect similar statistics;
not yet tested).
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Interpolated model reproduces the e-cloud
calculation in < 1/25 time

« Compare full-orbit model, At=.25/f_,, with interpolated model
with At 25 times longer
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Summary/conclusions

« High current, fill factor, pulse length, unclean walls of HIF induction
accelerators = dominant electron source is ionization of neutrals

released from walls

— except ion-impact-produced wall-born electrons for short pulse expts
or after drift compression

* Developing self-consistent modeling capability for e-cloud formation,
dynamics, effects on ions
« Simulation of dynamics of wall-born electrons from ion impacts
shows importance of keeping scattered ions
« Simulation of ion evolution with various model electron distributions
shows:
— effect of random amplitude variations > random offsets > const n,

— Resonant sinusoidal perturbations more potent, especially amplitude
resonant with breathing mode.

— lon beams surprisingly robust: 20% const n_ little effect; several
percent resonant perturbation needed for significant impact

— Possible instability (mild) associated with resonant perturbations
I The Heavy lon Fusion Virtual National Laboratory I :a% E %;\JPPPI

R. Cohen, ECloud04, -27-



