
Electron-Cloud Module
for the ORBIT Code

A. Shishlo, Y. Sato, J. Holmes,
S. Danilov, S. Henderson,

SNS project, ORNL

(April 21, 2004)

2

Outline

1. Why another electron cloud model
2. Why the ORBIT code
3. Simulation Approach
4. E-Cloud Module in the ORBIT Structure
5. Base Classes of the Electron Cloud Module
6. Algorithm
7. Conclusions

3

SNS Project , Oak Ridge, TN

Beam Energy 1 Gev
Ring Beam Intensity 1.5x1014

Repetition Rate 60 Hz

Accumulated Turns 1060
Accumulation Time 1.0 msec
Beam Power on Target 1.44 MW

4

Why Another Electron Cloud Model?
Present status:
The ORBIT E-Cloud Module is now fully implemented in ORBIT.

Benchmarking of the secondary electron emission model and electrons-
protons dynamics have been carried out (as a first step to apply ORBIT
with e-cloud module to PSR and SNS cases)

Why Another Electron Cloud Model?
To study the effect of electron clouds on the dynamics of the proton beam.

This electron cloud model :
• should be embedded in an existing accelerator code
• Includes the interactions of the electron cloud and the proton beam in

both directions
• describes the electron cloud build up and includes a secondary

emission surface model
• Should be a parallel code. For a PIC code there is no hope to simulate

this type of dynamics by using only one CPU.

5

Why the ORBIT Code
ORBIT: Developers and Collaborators
• SNS at ORNL, FermiLab, SNS at Brookhaven, Indiana University, LANL,

TRIUMF
ORBIT is a particle tracking code in 6D phase space. Its purpose is the design and

analysis of high intensity rings.
ORBIT is designed to simulate real machines: it has detailed models for
• Injection foil and painting
• Single particle transport through various types of lattice elements
• Magnet Errors, Closed Orbit Calculation, Orbit Correction
• RF and acceleration
• Longitudinal impedance and 1D longitudinal space charge
• Transverse impedance
• 2.5D space charge with or without conducting wall beam pipe
• 3D space charge
• Apertures and collimation
• ORBIT has an excellent suite of routines for beam diagnostics
• . . . more
ORBIT supports parallel processing based on MPI

ORBIT is open source code
• (contact person: Jeff Holmes, SNS project, ORNL)

6

Simulation Approach

Pipe Electron Cloud Region Proton Bunch

L=248 m and about 1000 turns

•We have to simulate a building up an electron cloud, its dynamics, its effect on a
proton bunch during the whole accumulation period or at least for several turns to
detect the development of instability.
•We are going to use PIC method for both p-Bunch and e-Cloud.

Proton beam 3D SC potential grid Electron Cloud Grids with few (may
be only one) longitudinal slices

7

E-Cloud Module in the ORBIT Structure

ORBIT Code Super Code Interface Modules

Original ORBIT ECloud.cc

Original ORBIT
C++ Classes

EP_Node.cc EP_NodeCalculator.cc

E-Cloud Module: Independent C++ Classes

- ORBIT Electron Cloud Module

•The ORBIT E-Cloud Module is a collection of C++ classes. Only three classes
connect the E-Cloud module with the original ORBIT code, so the module can
be easily modified to use in other accelerator code or independently.
•The special efforts have been made to provide the possibilities for an extension
of existing classes and improvement of the models.

8

Base Classes of the Electron Cloud Module
eBunch Keeps 6D – coordinates of the macro-electrons,

provides method to add and to delete macro-
particles. It has parallel capabilities.

EP_Boundary It is a 2D SC solver and keeps the transverse 2D
grid parameters.

Grid3D 3D grid with references to the EP_Boundary class. It
has parallel capabilities. The subclasses deal with
SC density and potential.

Surfaces Classes Collection of the classes describing different
surfaces.

Field Source
Classes

The collection of classes specifying electrostatic
and magnetic fields. Now it includes p-Bunch, e-
Bunch, and uniform fields.

Tracker Tracks macro-particles by using arbitrary set of
field sources.

EP_Node
EP_NodeCalculator

These classes connect the base electron-cloud
classes to the rest of ORBIT code.

9

eBunch Class
eBunch Class is a resizable container that keeps information about macro-
electrons:

–6D coordinates – x, y, z, px, py, pz
–macro-size
–dead/alive flag

It provides the following methods to operate with macro-electrons:
–access to each of the 6D coordinates
–add macro-electron
–delete macro-electron
–print all information into a file
–create all macro-electrons by reading the external file

Its parallel capabilities are used when it reads and writes the content of the
electron bunch into or from the external file.

We tried to do it as faster as possible.

10

EP_Boundary Class
EP_Boundary class :

– keeps information about 2D transverse grid, beam-pipe shape and
size in the XY-plane (the shape could be a circle, ellipse, or rectangle)

– is a 2D Poisson solver (Convolution method). It has the method that
accepts a 3D grid with space charge density and returns another 3D
grid with potential values at the grid points. Each XY-slice of the
potential 3D grid is a solution of the 2D space charge problem for the
XY-slice of the space-charge density grid.

– uses FFTW library and keeps necessary arrays inside

– Can add a boundary conditions (zero potential on the beam-pipe) to
the potential 3D grid by using the Capacity Matrix Method

– for an electron hitting the surface of the beam-pipe it finds an impact
point on the surface and calculates its normal vector by using internal
geometry information

– does not have any parallel capabilities

11

Grid3D Classes

Grid3D

RhoGrid3D PhiGrid3D
The Grid3D class is the parent class for a Grid3D class hierarchy :
• keeps the 3D array of double values inside itself
• provides direct access to the 3D array and to the 2D slices
• calculates a value and gradient at an arbitrary point inside the 3D grid

and bins macro-particles by using 3x3x3 points scheme
The RhoGrid3D and PhiGrid3D classes are the subclasses of the Grid3D
class and provide methods specific for space charge density and potential
grids
The parallel capabilities: the Grid3D class has methods that transform
it into a distributed 3D grid

. . . .
Grid3D1 Grid3D2 Grid3DN

CPU #1 CPU #2 CPU #N

Distributed Grid3D

12

Surface Classes
baseSurface

void impact(index, eBunch, r, n)

absrbSurface
No secondary emission

A surface class should implement impact method of the abstract baseSurface
class. It removes the macro-electron with a particular index from the eBunch
and adds the emitted new macro-electrons to the eBunch at the specific point
on the beam-pipe surface.

We can create easily new surface classes if we need new models.

The details of the implementation of the Pivi-Furman algorithm will be
discussed on the next slide.

perfectRflctSurface
Perfect reflection

CntrlSecEmSurface
implementation of Pivi-Furman algorithm

PRST-AB 5 124404 (2002)

13

Implementation of Furman-Pivi Algorithm (1)

Rationale:
Furman-Pivi algorithm of secondary emission assumes that all primary and
secondary macro-electrons have the same macro-size. As result the number of
macro-electrons increases exponentially during the electron cloud build up for
single bunched proton beam passage. Calculation time grows significantly, so we
wanted to avoid this effect and gained control over the macro-electrons population
in the electron cloud.

The definition of the variables in the secondary emission algorithm:
Min – macro-size of the electron hitting the surface
Mout – macro-size of the resulting electron

tsre δδδδ ++= Total SEY is the sum of “elastic”, “rediffused”, and
“true secondary” components

))(Ef 1/(M M
)(Ef G if 0M

 / ;/ ;/

0deathinout

0deathout

−⋅=
<=

===

δ

δδδδδδ tstsrree ppp
G – random number between 0-1
fdeath(E0) – user defined function,
usually it is equal to 0 if E0> 1 eV

0, EM in EM out ,

14

Field Source Classes

baseFieldSource
void getElectricField(double x, double y, double z, double& f_x, double& f_y, double& f_z);
void getMagneticField(double x, double y, double z, double& f_x, double& f_y, double& f_z);

eCloudFieldSource
The source of electric fields from e-cloud

pBunchFieldSource
The source of electric and magnetic fields

from p-bunch

UniformField
The source of uniform electric and

magnetic fields

We can create additional sources. For instance, It can be a
magnetic field of dipoles, quads etc.

15

Tracker Class
baseParticleTracker – the parent class of all trackers
The subclasses should implement only one method: the method that will move
macro-electrons.

The main method:
moveParticles(double time,

eBunch* eb,
Grid3D* rhoGrid3D,
baseSurface* surface)

Where “time” - time of tracking, “eb” – macro-electrons bunch

We can add as many sources as we want:
addMagneticFieldSource(BaseFieldSource* fs)
addElectricFieldSource(BaseFieldSource* fs)

At this moment there are two methods implemented to calculate the
nonrelativistic electron’s motion:
• can be integrated symplectically using a leapfrog method
• can be integrated analytically, using a constant local field approximation

16

Tracker Benchmark

RR
mv

⋅⋅⋅
=

0

2

2 επ
λ

This is the test for 2D solver and the
tracker.

17

EP_Node and EP_NodeCalculator
EP_Node – the subclass of the Node class of the ORBIT code:
• it represents a accelerator lattice element through which the proton

bunch should be propagated.
• there could be an arbitrary number of this nodes in the lattice. Each

node has its own set of macro-electrons in the e-bunch.
• it uses EP_NodeCalculator to propagate the proton bunch through the

e-cloud region

EP_NodeCalcularor – the class that actually combines all classes
together and implements our algorithm

• 1. preparation for calculation:
• checking the sizes of the arrays and resizing if necessary
• proton bunch analysis, fields calculation

• 2. simulation of the electron cloud build up and the electron cloud
field having an effect on the proton bunch

• 3. applying accumulated kicks from electrons to the protons

18

Algorithm (1)
Stage 1. Preparations

Proton beam 3D grids (Grid3D)

CPU1 CPUn…..

• get information about distribution
of the slices between CPUs. This
data are provided by a special
class – ParticleDistributor

• resize if necessary 3D arrays:
space charge density, space
charge potential, x, y, z kicks – 5
distributed 3D grids

• bin macro-particles of the proton
bunch into the 3D space charge
density grid. Provide necessary
communication between CPUs to
produce distributed 3D grid

• find the proton bunch potential
• calculates proton line density

At this stage we dealing with the proton
bunch only. The macro-particles of this
bunch are distributed between CPUs.

The space charge density grid and
proton line density are used in the
future calculation if electrons are
produced by residual gas ionization or
by proton losses on the chamber wall

Memory M=Nx*Ny*Nz*5 2000x64x64 x 5 -> 200 Mb – 1 Gb

19

Algorithm (2)
Stage 2. Propagation p-bunch through e-cloud

During the turn, as time progresses the proton grid is moved through the
electron cloud region at the beam velocity. It is done by three nested loops.

1-st nested loop (upper level)

T1step= Trev/N1step N1step = 2000 – 10000 for PSR or SNS case
• The number of steps is defined by the requirement adiabatic
changes in the electron cloud potential.
• In the beginning of this iteration, primary electrons are generated by
routines simulating protons grazing the vacuum chamber or residual
gas ionization. The generated macro-electrons are distributed
randomly between CPUs. During the calculations they reside at the
same CPU where they have been generated. No macro-electrons
distributor is needed.
• the space charge potential of the electrons is calculated. This
potential is sum of all potentials trough all CPUs, so communications
between CPUs are needed. This potential is using as one of the field
sources for the Tracker.
• execute the 2-nd nested loop (intermediate level)
• accumulate kicks on the proton bunch into the grids for x,y,z
directions

20

Algorithm (3)
Stage 2. Propagation p-bunch through e-cloud

2-st nested loop (intermediate level)

T2step= T1step/N2step N2step = 1 – 5

The potential of proton beam at the
specific position is used to update the
proton beam field source for the
Tracker.
The adiabatic changes in the proton
beam potential could be more
important, so there is a possibility to
update the proton beam field source
more frequently comparing to e-cloud
field source. Usually it is enough to
update fields simultaneously (N2 = 1).
This step require communications
between CPUs, because the p-beam
potential grid is distributed.

CPU1 ….. CPUn

21

Algorithm (4)
Stage 2. Propagation p-bunch through e-cloud (Continue)
3-rd nested loop (lower level)

Electron Cloud Grids

T3step= T2step/N3step N3step = 5 – 20
Ntotal = N1xN2xN3 – tens of thousands

Inside this loop we integrate the equation of motion of the electrons
and consider hitting the surface of the beam pipe.

• Each electron must be tested to determine whether it
remains in the electron cloud region
• If an electron crosses the beam pipe boundary, the Pivi-
Furman electron-wall interaction routines must be run for that
electron.
• If an electron leaves the longitudinal node end, its
longitudinal velocity is reflected, i.e. it bounces off the end.

Stage 3. Propagation p-bunch through e-cloud
We are applying accumulated kicks from electrons to the protons.

22

Conclusions

• The electron cloud module has been inserted
into the ORBIT code

• The dynamics of proton-electrons interaction
can be included into simulations

• The real calculations can be carried out only on
parallel computers

• The initial benchmarks has been performed
(next talk, Y. Sato)

	Electron-Cloud Module for the ORBIT CodeA. Shishlo, Y. Sato, J. Holmes, S. Danilov, S. Henderson, SNS project, ORNL
	Outline
	SNS Project , Oak Ridge, TN
	Why Another Electron Cloud Model?
	Why the ORBIT Code
	Simulation Approach
	E-Cloud Module in the ORBIT Structure
	Base Classes of the Electron Cloud Module
	eBunch Class
	EP_Boundary Class
	Grid3D Classes
	Surface Classes
	Implementation of Furman-Pivi Algorithm (1)
	Field Source Classes
	Tracker Class
	Tracker Benchmark
	EP_Node and EP_NodeCalculator
	Algorithm (1)
	Algorithm (2)
	Algorithm (3)
	Algorithm (4)
	Conclusions

